• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于可行弧内点算法的上限有限单元法优化求解

赵明华, 张锐, 雷勇

赵明华, 张锐, 雷勇. 基于可行弧内点算法的上限有限单元法优化求解[J]. 岩土工程学报, 2014, 36(4): 604-611. DOI: 10.11779/CJGE201404002
引用本文: 赵明华, 张锐, 雷勇. 基于可行弧内点算法的上限有限单元法优化求解[J]. 岩土工程学报, 2014, 36(4): 604-611. DOI: 10.11779/CJGE201404002
ZHAO Ming-hua, ZHANG Rui, LEI Yong. Optimization of upper bound finite element method based on feasible arc interior point algorithm[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 604-611. DOI: 10.11779/CJGE201404002
Citation: ZHAO Ming-hua, ZHANG Rui, LEI Yong. Optimization of upper bound finite element method based on feasible arc interior point algorithm[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 604-611. DOI: 10.11779/CJGE201404002

基于可行弧内点算法的上限有限单元法优化求解  English Version

基金项目: 国家自然科学基金项目(51278187)
详细信息
    作者简介:

    赵明华(1956- ),男,湖南洞口县人,教授,博士生导师,主要从事桩基及软土地基处理研究。E-mail: mhzhaohd@21cn.com。

  • 中图分类号: TU43;O24

Optimization of upper bound finite element method based on feasible arc interior point algorithm

  • 摘要: 上限有限单元法将寻找机动相容速度场的问题转化为一个数学规划问题,克服了人为构造机动相容速度场的困难,在复杂工程问题中具有广阔的应用前景。基于非线性规划的上限有限单元法,可避免对屈服函数的线性化处理,大大地减少了优化变量数,同时可节约大量存储空间,但由此产生的非线性规划模型十分复杂。为此,在引入一种非线性上限规划模型的基础上,探讨基于可行弧内点算法对其进行优化求解的步骤。首先,采用BFGS公式对屈服函数的Hessian矩阵进行迭代,避免了计算过程中该矩阵病态的问题;其次,通过构造可行弧,克服了当迭代点到达非线性约束边界时搜索步长过短的问题;最后,采用Wolfe非精确搜索技术进行线性搜索,提高了步长搜索效率。通过MATLAB编程进行算例分析表明,基于可行弧内点算法的非线性上限有限单元法,计算效率高、计算误差小、数值稳定性好,可以适应大部分土体稳定性分析计算。
    Abstract: The upper bound finite element method converts the problem of finding a kinematic admissible velocity field into a mathematical programming one, which can overcome the difficulty of artificially constructing a kinematic velocity field, thus, it has a broad prospect in applications to complex problems. The formulation of the upper bound finite element method based on nonlinear programming can avoid linearization of yield functions, as a result, it greatly reduces the optimization variables and saves a great deal of memory space. However, this leads to a nonlinear programming model that is quite complex. By introducing a nonlinear upper bound programming model, the steps for its optimization using feasible arc interior point algorithm are discussed. Firstly, the BFGS formula is taken as the updating rules for Hessian of yield functions to avoid the ill-conditioning problem in computation. Secondly, by constructing a feasible arc, the shortcoming of a too short step when the current iteration point reaches the nonlinear constraint boundary is overcome. Finally, the Wolfe's line search technique is used for step-length search which enhances the line search efficiency. Example analysis by MATLAB programming shows that the proposed method is highly efficient, numerically stable and accurate enough for engineering practice, thus, it is applicable to most soil stability problems.
  • [1] 陈祖煜. 土力学经典问题的极限分析上、下限解[J]. 岩土工程学报, 2002, 24(1): 1-11. (CHEN Zu-yu. Limit analysis for the classic problems of soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 1-11. (in Chinese))
    [2] CHEN W F. Limit analysis and soil plasticity[M]. Amsterdam: Elsevier Scientific Publishing Company, 1975.
    [3] ANDERHEGGEN E, KNOPFEL H. Finite element limit analysis using linear programming[J]. International Journal of Solids and Structures, 1972, 8(12): 1413-1431.
    [4] BOTTERO A, NEGRE R, PASTOR J, et al. Finite element method and limit analysis theory for soil mechanics problems[J]. Computer Methods in Applied Mechanics and Engineering, 1980, 22(1): 131-149.
    [5] SLOAN S W, KLEEMAN P W. Upper bound limit analysis using discontinuous velocity fields[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 127: 293-314.
    [6] 杨峰, 阳军生, 张学民. 基于线性规划模型的极限分析上限有限元的实现[J]. 岩土力学, 2011, 32(3): 914-921. (YANG Feng, YANG Jun-sheng, ZHANG Xue-min. Implementation of finite element upper bound solution oflimit analysis based on linear programming model[J]. Rock and Soil Mechanics, 2011, 32(3): 914-921. (in Chinese))
    [7] 王均星, 王汉辉, 吴雅峰. 土坡稳定的有限元塑性极限分析上限法研究[J]. 岩石力学与工程学报, 2004, 23(11): 1867-1873. (WANG Jun-xing, WANG Han-hui, WU Ya-feng. Stability analysis of soil slope by finite element method with plastic limit upper bound[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(11): 1867-1873. (in Chinese))
    [8] 杨小礼, 李亮, 刘宝琛. 大规模优化及其在上限定理有限元中的应用[J]. 岩土工程学报, 2001, 23(5): 602-605. (YANG Xiao-li, LI Liang, LIU Bao-chen. Large-scale optimization and its application to upper bound theorem using kinematical element method[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 602-605. (in Chinese))
    [9] 姜功良. 浅埋软土隧道稳定性极限分析[J]. 土木工程学报, 1998, 31(5): 65-72. (JIANG Gong-liang. Limit analysis of the stability of shallow tunnels in soft ground[J]. China Civil Engineering Journal, 1998, 31(5): 65-72. (in Chinese))
    [10] LYAMIN A V, SLOAN S W. Upper bound limit analysis using linear finite elements and non-linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 573-611.
    [11] HERSKOVITS J, SANTOS G. Feasible arc interior point algorithm for nonlinear optimization[C]// Computational Mechanics, New Trends and Applications. CIMNE, Barcelona, 1998.
    [12] HERSKOVITS J, MAPPA P, GOULART E, et al. Mathematical programming model and algorithms for engineering design optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(33): 3244-3268.
    [13] COHN M Z, MAIER G. Engineering plasticity by mathematical programming[M]. New York: Pergamon Press, 1979.
    [14] NOCEDAL J, WRIGHT J W. Numerical optimization[M]. New York: Springer, 2006.
    [15] RAO S S. Engineering optimization: theory and practice[M]. New Jersey: John Wiley & Sons, 2009.
    [16] ABBO A J, SLOAN S W. A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion[J]. Computers and Structures, 1995, 54(3): 427-441.
    [17] LYAMIN A V, SLOAN S W. Mesh generation for lower bound limit analysis[J]. Advances in Engineering Software, 2003, 34: 321-338.
    [18] DUFF I S. A code for the solution of sparse symmetric definite and indefinite systems[J]. ACM Transactions on Mathematical Software, 2004, 30(2): 118-144.
    [19] 钱家欢, 殷宗泽. 土工原理与计算[M]. 2版. 北京: 中国水利水电出版社, 1996. (QIAN Jia-huan, YIN Zong-ze. Principles of soil engineering and calculation[M]. 2nd ed. Beijing: China Water Power Press, 1996. (in Chinese))
  • 期刊类型引用(10)

    1. 陆晶晶,李康. 柔性沥青路面病害成因分析及修复措施研究. 建筑机械. 2025(01): 16-21 . 百度学术
    2. 路继红,李丽胜,张沛林. 河西盐渍土地区路面拱胀特征与防治技术措施. 价值工程. 2025(16): 134-136 . 百度学术
    3. 林宇坤,宋玲,刘杰,闫晓亮,朱世煜. 荒漠区沥青路面拱胀病害机理及影响因素分析. 公路交通科技. 2024(04): 31-41 . 百度学术
    4. 张辉,王志杰. 硫酸盐侵蚀作用对ATB力学性能的影响. 安徽建筑. 2024(07): 84-87 . 百度学术
    5. 陆晶晶,刘德功. 尼日利亚某A级公路柔性沥青路面病害分析与路面结构设计. 建筑机械. 2024(11): 10-15 . 百度学术
    6. 张梦媛,丁龙亭,王选仓,谢金生,王孜健. 基于Comsol Multiphysics的半浸泡非饱和水泥基材料水分输运数值模型研究. 重庆大学学报. 2024(12): 45-56 . 百度学术
    7. 张留俊,裘友强,张发如,李雄飞,刘军勇. 降水入渗条件下氯盐渍土水盐迁移规律. 交通运输工程学报. 2023(04): 116-127 . 百度学术
    8. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 . 百度学术
    9. 吴军. 掺入玄武岩纤维的道桥沥青路面复合材料试验分析. 建筑科技. 2023(06): 108-110 . 百度学术
    10. 屈磊,许健,陈忠燕,刘永昊. 新疆盐渍土地区公路纵向开裂机制探讨. 市政技术. 2022(10): 40-44 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 17
出版历程
  • 收稿日期:  2013-03-26
  • 发布日期:  2014-04-21

目录

    /

    返回文章
    返回