• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

粒状材料临界状态的颗粒级配效应

李罡, 刘映晶, 尹振宇

李罡, 刘映晶, 尹振宇. 粒状材料临界状态的颗粒级配效应[J]. 岩土工程学报, 2014, 36(3): 452-457. DOI: 10.11779/CJGE201403007
引用本文: 李罡, 刘映晶, 尹振宇. 粒状材料临界状态的颗粒级配效应[J]. 岩土工程学报, 2014, 36(3): 452-457. DOI: 10.11779/CJGE201403007
LI Gang, LIU Ying-jing, YIN Zhen-yu. Grading effect on critical state behavior of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 452-457. DOI: 10.11779/CJGE201403007
Citation: LI Gang, LIU Ying-jing, YIN Zhen-yu. Grading effect on critical state behavior of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 452-457. DOI: 10.11779/CJGE201403007

粒状材料临界状态的颗粒级配效应  English Version

基金项目: 国家自然科学基金项目(41240024,51161130523); 欧盟玛丽居里行动计划项目(PIAPP-GA-2011-286397); 高等学校博士学科点专项科研基金项目(20110073120012)
详细信息
    作者简介:

    李 罡(1984- ),男,博士研究生,主要从事土力学研究。E-mail: engineer.ligang@gmail.com。

    通讯作者:

    尹振宇

  • 中图分类号: TU411

Grading effect on critical state behavior of granular materials

  • 摘要: 采用理想颗粒材料(DEM理想球体)、人工颗粒材料(玻璃球)和天然颗粒材料(Hostun砂),通过数值和室内常规三轴排水试验研究了颗粒材料级配对其应力-应变响应和临界状态的影响规律。试验结果表明:在相同加载初始条件下(e0 = 0.574,p0' = 400 kPa),随着不均匀系数Cud60/d10)的增大,试样在q-ε1平面上从剪胀变为剪缩,在εv1平面上表现出由应变软化转变为应变硬化的特性。通过不同围压下的三轴排水试验,在e-p'q-p'平面上分别对不同级配的颗粒材料集合体绘制了临界状态线,e-p'平面随着Cu的增大临界状态线往下偏移,而在q-p'平面上临界状态线不随Cu的改变而改变。
    Abstract: By adopting the idealized granular materials (DEM sphere), artificial materials (glass bead) and natural materials (Hostun sand), the grading effect on the stress-strain and the critical state behavior of granular materials is investigated through numerical and conventional drained triaxial tests. The results reveal that for the samples with the same initial loading conditions (e0 = 0.574, p'0 = 400 kPa), granular materials with a wider particle distribution display more contractive behavior and also strain hardening upon shearing. Furthermore it is found that the critical state line in the e-p' plane shifts downward as grading broadens with an increase of the coefficient of uniformity Cu, whereas the critical state line in the q-p' plane appears to be independent of the coefficient of uniformity Cu.
  • [1] HU W, YIN Z Y, DANO C, et al. A constitutive model for granular materials considering grain breakage[J]. Science China Technological Sciences, 2011, 54(8): 2188-2196.
    [2] 刘汉龙, 孙逸飞, 杨 贵, 等. 粗粒料颗粒破碎特性研究述评[J]. 河海大学学报(自然科学版), 2012, 40(4): 361-369. (LIU Han-long, SUN Yi-fei, YANG Gui, et al. A review of particle breakage characteristics of coarse aggregates[J]. Journal of Hohai University (Natural Sciences), 2012, 40(4): 361-369. (in Chinese))
    [3] 孙海忠, 黄茂松. 考虑颗粒破碎的粗粒土临界状态弹塑性本构模型[J]. 岩土工程学报, 2010, 32(8): 1284-1290. (SUN Hai-zhong, HUANG Mao-song. Critical state elasto-plastic model for coarse granular aggregates incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1284-1290. (in Chinese))
    [4] FOURIE A B, PAPAGEORGIOU G. Defining an appropriate steady state line for Merrriespruit gold tailings[J]. Canadian Geotechnical Journal, 2001, 38(4): 695-706.
    [5] HU W. Contribution a l’etude de l’effet d’echelle dans les materiaux granulaires[D]. Nantes: Ecole Centrale de Nantes, 2009. (HU W. Contribution to the scale effect of granular materials[D]. Nantes: Central University of Nantes, 2009. (in French))
    [6] COOP M. The mechanics of uncemented carbonate sands[J]. Géotechnique, 1990, 40(4): 607-626.
    [7] VERDUGO R, HOZ K. Strength and stiffness of coarse granular soils[C]// Proceeding of Geotechnical Symposium Soil Stress-Strain Behavior: Measurement, Modeling and Analysis. Rome, 2007: 243-252.
    [8] BIAREZ J, HICHER P Y. Influence de la granulométrie et de son évolution par ruptures de grains sur le comportement mécanique de matériaux granulaires[J]. Revue Francaise de Genie Civil, 1997, 1(4): 607-631. (Influence of grains breakage on the mechanical behaviors of granular materials [J]. Journal of French Civil Engineering, 1997, 1(4): 607-631. (in French))
    [9] DAOUADJI A, HICHER P Y, RAHMA A. An elastoplastic model for granular materials taking into account grain breakage[J]. European Journal of Mechanics-A/Solids, 2001, 20(1): 113-137.
    [10] 尹振宇, 许 强, 胡 伟. 考虑颗粒破碎效应的粒状材料本构研究: 进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. (YIN Zhen-yu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese))
    [11] WOOD D M, MAEDA K. Changing grading of soil: effect on critical states[J]. Acta Geotechnica, 2007, 3(1): 3-14.
    [12] YAN W, DONG J. Effect of particle grading on the response of an idealized granular assemblage[J]. International Journal of Geomechanics, 2011, 11(4): 276-285.
    [13] BELKHATIR M, ARAB A, SCHANZ T, et al. Laboratory study on the liquefaction resistance of sand-silt mixtures: effect of grading characteristics[J]. Granular Matter, 2011, 13(5): 599-609.
    [14] YUDHBIR, ABEDINZADEH R. Quantification of particle shape and angularity using the image analyzer[J]. Geotechnical Testing Journal, 1991, 14(3): 296-308.
    [15] CHO G, DODDS J, SANTAMARINA J. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591-602.
    [16] MAEDA K, FUKUMA M, NUKUDANI E. Macro and micro critical states of granular materials with different grain shapes[C]// Proceeding of the 6th International Conference on Micromechanics of Granular Media. Golden, 2009: 829-832.
    [17] CAVARRETTA I. The influence of particle characteristics on the engineering behaviour of granular materials[D]. London: Imperial College, 2009.
    [18] ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-415.
    [19] LI X S, WANG Y. Linear representation of steady-state line for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1215-1217.
  • 期刊类型引用(14)

    1. 刘小锐,张晗. 盾构隧道下穿施工对严重倾斜挡墙影响及加固措施分析. 粉煤灰综合利用. 2025(01): 145-149 . 百度学术
    2. 余鹏. 盾构隧道穿越在建PBA车站风险控制技术研究. 铁道标准设计. 2025(04): 148-156 . 百度学术
    3. 马昭,张明礼,段旭晗,赵博. 大断面浅埋隧道地表沉降Peck修正公式及其应用. 长江科学院院报. 2024(03): 118-125 . 百度学术
    4. 陈湘生,全昭熹,陈一凡,沈翔,苏栋. 极端环境隧道建造面临的主要问题及发展趋势. 隧道建设(中英文). 2024(03): 401-432 . 百度学术
    5. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 . 百度学术
    6. 刘彦良. 水下大直径盾构下穿施工对防汛大堤影响研究. 建筑机械. 2024(07): 142-146 . 百度学术
    7. 黄震,黄侦谦,侯东祥,尤伟军,管世玉. 盾构掘进对浅基础建筑物的扰动及影响分区研究. 科技通报. 2024(07): 97-106 . 百度学术
    8. 高泉平,杨硕,芮瑞,张泉,聂利文,孙天健. 邻近挡土结构隧道开挖引起地层变形的试验研究. 武汉理工大学学报. 2023(09): 75-82 . 百度学术
    9. 张恒旭. 某过江隧道江心洲防洪大堤开挖对周围环境的影响分析. 工程技术研究. 2022(09): 13-17 . 百度学术
    10. 王智德,武海港,杨文东,李杰,李根,刘奇. 地铁隧道近距离侧穿邻近桩基影响的试验研究. 武汉理工大学学报. 2022(06): 69-77 . 百度学术
    11. 王长虹,马铖涛,吴昭欣,王昆,汤道飞. CPTU数据校准黏土和砂土统一模型本构参数的随机力学-贝叶斯方法. 土木工程学报. 2022(10): 101-116 . 百度学术
    12. 董立波. 上软下硬复合地层中盾构下穿既有建筑物受力性能研究. 智能城市. 2021(04): 15-16 . 百度学术
    13. 芮瑞,翟玉新,徐杨青,何清. 邻近地层损失对地下挡土结构土压力与地表沉降影响试验研究. 岩土工程学报. 2021(04): 644-652 . 本站查看
    14. 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用. 地球科学进展. 2020(10): 1087-1098 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 25
出版历程
  • 收稿日期:  2013-03-11
  • 发布日期:  2014-03-19

目录

    /

    返回文章
    返回