• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

散粒介质三维应力-组构解析与破坏分析

刘洋, 张铎, 汪成林

刘洋, 张铎, 汪成林. 散粒介质三维应力-组构解析与破坏分析[J]. 岩土工程学报, 2014, 36(3): 401-408. DOI: 10.11779/CJGE201403001
引用本文: 刘洋, 张铎, 汪成林. 散粒介质三维应力-组构解析与破坏分析[J]. 岩土工程学报, 2014, 36(3): 401-408. DOI: 10.11779/CJGE201403001
LIU Yang, Ching S Chang, ZHANG Duo. Analytical solution of stress-fabric relationship and failure of granular materials in three dimensions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 401-408. DOI: 10.11779/CJGE201403001
Citation: LIU Yang, Ching S Chang, ZHANG Duo. Analytical solution of stress-fabric relationship and failure of granular materials in three dimensions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 401-408. DOI: 10.11779/CJGE201403001

散粒介质三维应力-组构解析与破坏分析  English Version

基金项目: 国家自然科学基金项目(51178044); 新世纪优秀人才项目(NCET-11-0579); 中央高校基本科研业务费项目(FRF-TP-12-001B)
详细信息
    作者简介:

    刘 洋(1979- ),男,江苏徐州人,博士,副教授,主要从事土细观力学和砂土液化方面的研究与教学工作。E-mail: ly-ocean@sohu.com。

  • 中图分类号: TU441

Analytical solution of stress-fabric relationship and failure of granular materials in three dimensions

  • 摘要: 基于散粒体宏-微观力学分析,首先提出了3类张量的概念,推导了散粒体三维应力-组构关系,接着给出了二维和轴对称条件下的应力-组构解析表达式,并采用双轴和三轴离散元(DEM)模拟结果对解析解进行了验证分析。最后基于应力-组构解析,采用“真应力”的概念分析了散粒体的强度问题。研究结果表明:散粒体中的应力分布受3类张量的共同影响,双轴与三轴的离散元模拟与解析关系较吻合。在略去了高阶项后,二维应力-组构关系式与Rothenburg等提出的表达式一致。进一步的分析表明:散粒材料强度受控于“真应力”,表观活动摩擦角的变化实质是颗粒摩擦和各向异性组构共同作用的结果。研究成果可以用于分析散粒体各向异性强度特征和本构关系。
    Abstract: Based on the macro-micro mechanical analysis, three kinds of tensors are proposed to investigate the stress-fabric relationship. An explicit relationship is derived among applied stress tensor, material fabric tensor and force-fabric tensor in three dimensions. The expressions are also obtained in two dimensions and triaxial stress condition, which are verified by DEM simulation of biaxial and triaxial tests. A concept of “true stress” is adopted to investigate the failure of granular materials. The analytical and numerical results indicate that the stress in granular materials is affected by the three kinds of tensors motioned above. The analytical solution of stress-fabric is coincided with the DEM results and has the same form as that proposed by Rothenburg when the higher order terms are omitted. The strength of granular materials is controlled by the “true stress”, and the apparent mobilized frictional angle is the joint action of friction of particles and anisotropic fabric induced by the applied stress. The proposed stress-fabric relationship is potentially useful for further development of the strength theory and stress-stain behavior for granular materials.
  • [1] BREWER R. Fabric and mineral analysis of soils[M]. New York: John Wiley and Sons, 1964.
    [2] ODA M. Initial fabrics and their relations to mechanical properties of granular materials[J]. Soils and Foundations, 1972, 12(1): 17-36.
    [3] MUHUNTHAN B, CHAMEAU J L. Void fabric tensor and ultimate state surface of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering , 1997, 123(2): 173-181.
    [4] ODA M, KONISHI J. Microscopic deformation mechanism of granular materials[J]. Soils and Foundations, 1974, 14(4): 25-38.
    [5] ODA M, KOISHIKAWA I, HIGUCHI T. Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25-38.
    [6] ODA M, NAKAYAMA H. Yield function for soil with anisotropic fabric[J]. Journal of Engineering Mechanics, 1989, 115(1): 89-104.
    [7] SATAKE M. Constitution of mechanism of granular materials through graph representation[M]// Theoretical and Applied Mechanics. Tokyo: University of Tokyo Press, 1978.
    [8] Nemat-Nasser S. Influence of fabric on liquefaction and densification potential of cohesionless sand[J]. Mechanics of Materials, 1982, 1(1): 43-62.
    [9] PIETRUSZCZAK S, LYDZBA D, SHAO J F. Modelling of inherent anisotropy in sedimentary rocks[J]. International Journal of Solids and Structures, 2002, 39(3): 637-648.
    [10] PIETRUSZCZAK S, MROZ Z. Formulation of anisotropic failure criteria incorporating a microstructure tensor[J]. Computers and Geotechnics, 2000, 26(2): 105-112.
    [11] 沈珠江. 复杂荷载下砂土液化变形的结构性模型[C]// 第五届全国土动力学学术会议论文集. 大连: 大连理工大学出版社, 1998. (SHEN Zhu-jiang. Structural model of liquefaction deformation of sand under complicated loading[C]// The 5th National Conference on Soil Dynamics. Dalian: Dalian University of Technology Press, 1998. (in Chinese))
    [12] ODA M. Similarity rule of crack geometry in statistically homogeneous rock masses[J]. Mechanics of Materials, 1984, 3(2): 119-129.
    [13] PIETRUSZCZAK S, MROZ Z. On failure criteria for anisotropic cohesive-frictional materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(5): 509-524.
    [14] KANATANI K. Distribution of directional data and fabric tensors[J]. International Journal of Engineering Science, 1984, 22(2): 149-164.
    [15] LI X, YU H S. Tensorial characterisation of directional data in micromechanics[J]. International Journal of Solids and Structures, 2011, 48(14/15): 2167-2176.
    [16] LADE P V. Failure criterion for cross-anisotropic soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, ASCE, 134 (1): 117-124.
    [17] GAO Z, ZHAO J, YAO Y. A generalized anisotropic failure criterion for geomaterials[J]. International Journal of Solids and Structures, 2010, 47(22/23): 3166-3185.
    [18] 李学丰, 黄茂松, 钱建固. 宏细观结合的砂土各向异性破坏准则[J]. 岩石力学与工程学报, 2010, 29(9): 1885-1892. (LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Failure criterion of anisotropic sand with method of macro-meso incorporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885-1892. (in Chinese))
    [19] LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(10): 868-880.
    [20] WAN R G, GUO P J. Stress dilatancy and fabric dependencies on sand behavior[J]. Journal of Engineering Mechanics, 2004, 130(6): 635-645.
    [21] CHANG C S, YIN Zhen-yu. Micromechanical modeling for inherent anisotropy in granular materials[J]. Journal of Engineering Mechanics, 2010, 136(7): 830-838.
    [22] ROTHENBURG L, BATHURST R J. Analytical study of induced anisotropy in idealized granular materials[J]. Géotechnique, 1989, 39(4): 601-614.
    [23] ROTHENBURG L, KRUYT N P. Micromechanical definition of entropy for quasi-static deformation of granular materials[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(3): 634-655.
    [24] YUNUS Y, VINCENSAND E, CAMBOU B. Numerical local analysis of relevant internal variables for constitutive modeling of granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(11): 1101-1123.
    [25] KUHN M R. Micro-mechanics of fabric and failure in granular materials[J]. Mechanics of Materials, 2010, 42(9): 827-840.
    [26] THORNTON C, ZHANG L. On the evolution of stress and microstructure during general 3D deviatoric straining of granular media[J]. Géotechnique, 2010, 60(5): 333-341.
    [27] KRUYT N P. Micromechanical study of fabric evolution in quasi-static deformation of granular materials[J]. Mechanics of Materials, 2012, 44: 120-129.
    [28] CHANG C S, MISRA A. Packing structure and mechanical properties of granulates[J]. Journal of Engineering Mechanics Division, ASCE, 1990, 116(5): 1077-1093.
    [29] CHRISTOFFERSON J, MEHRABADI M M, NEMAT- NASSAR S. A micromechanical description on granular material behavior[J]. Journal of Applied Mechanics, ASME, 1981, 48(2): 339-344.
    [30] ROTHENBURG L, SELVADURAI A P S. Micromechanical definitions of the Cauchy stress tensor for particular media[C]// Mechanics of Structured Media. Amsterdam, Elsevier, 1981: 469-486.
    [31] LUBARDA V A, KRAJCINOVIC D. Damage tensors and the crack density distribution[J]. International Journal of Solids and Structures, 1993, 30(20): 2859-2877.
    [32] 刘 洋. 砂土的各向异性强度准则:应力诱发各向异性[J]. 岩土工程学报, 2013, 35(3): 460-468. (LIU Yang. Anisotropic strength criteria of sand: Inherent Anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 460-468. (in Chinese))
    [33] LADE P V, DUNCAN J M. Cubical triaxial tests on cohesionless soil[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1973, 99(SM10): 793-812.
计量
  • 文章访问数:  502
  • HTML全文浏览量:  4
  • PDF下载量:  445
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-14
  • 发布日期:  2014-03-19

目录

    /

    返回文章
    返回