• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Zheng, JIANG Mingjing, WANG Siyuan. Discrete element analysis of macro- and micro-mechanical properties of methane hydrate-bearing clay under different salinities[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 926-935. DOI: 10.11779/CJGE20231117
Citation: LI Zheng, JIANG Mingjing, WANG Siyuan. Discrete element analysis of macro- and micro-mechanical properties of methane hydrate-bearing clay under different salinities[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 926-935. DOI: 10.11779/CJGE20231117

Discrete element analysis of macro- and micro-mechanical properties of methane hydrate-bearing clay under different salinities

More Information
  • Received Date: November 20, 2023
  • Available Online: November 10, 2024
  • The mechanical behavior of methane hydrate bearing soil is closely related to the characteristics of hydrate phase equilibrium. Compared with sand, clay has smaller pore size and the pore size has a great influence on the characteristics of hydrate phase equilibrium. A three-dimensional thermal-hydro-mechanical-chemical bond contact model for grain-cementing type methane hydrate-bearing clay is established by introducing the influences of the pore size on the phase equilibrium line. The numerical simulation of triaxial compression tests on the methane hydrate-bearing clay under different salinities is carried out. The macro- and micro-mechanical behaviors such as stress-strain curve, volume strain, number of bond breakage, aggregate crushing rate and strength characteristics are analyzed and compared with the mechanical properties of remolded clay. The enhancement of bond on the mechanical properties of the methane hydrate-bearing clay is discussed. The results show that (1) Under low confining pressure, with the increase of the salinity, the peak shear strength of the methane hydrate-bearing clay gradually decreases, and the strain softening is less significant. At the same time, the volume strain shows shear contraction first, then weak dilatation and then shear contraction. Under high confining pressure, it shows strain hardening and shear contraction. (2) With the increase of the confining pressure and salinity, the number of bond breakage and the aggregate crushing rate of the methane hydrate-bearing clay gradually increase. (3) Finally, through the analysis of the strength characteristics of the methane hydrate-bearing clay, it is found that its strength envelope presents typical nonlinear characteristics.
  • [1]
    ZHANG W, LIANG J Q, SU P B, et al. Distribution and characteristics of mud diapirs, gas chimneys, and bottom simulating reflectors associated with hydrocarbon migration and gas hydrate accumulation in the Qiongdongnan Basin, northern slope of the South China Sea[J]. Geological Journal, 2019, 54(6): 3556-3573. doi: 10.1002/gj.3351
    [2]
    LIANG J Q, ZHANG W, LU J A, et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: insights from site GMGS5-W9-2018[J]. Marine Geology, 2019, 418: 106042. doi: 10.1016/j.margeo.2019.106042
    [3]
    王淑云, 罗大双, 张旭辉, 等. 含水合物黏土的力学性质试验研究[J]. 实验力学, 2018, 33(2): 245-252.

    WANG Shuyun, LUO Dashuang, ZHANG Xuhui, et al. Experimental study of mechanical properties of hydrate clay[J]. Journal of Experimental Mechanics, 2018, 33(2): 245-252. (in Chinese)
    [4]
    石要红, 张旭辉, 鲁晓兵, 等. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 2015, 47(3): 521-528.

    SHI Yaohong, ZHANG Xuhui, LU Xiaobing, et al. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 521-528. (in Chinese)
    [5]
    ZHANG X H, LU X B, SHI Y H, et al. Study on the mechanical properties of hydrate-bearing silty clay[J]. Marine and Petroleum Geology, 2015, 67: 72-80. doi: 10.1016/j.marpetgeo.2015.04.019
    [6]
    SONG Y C, ZHU Y M, LIU W G, et al. The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments[J]. Journal of Petroleum Science and Engineering, 2016, 147: 77-86. doi: 10.1016/j.petrol.2016.05.009
    [7]
    LI Y H, SONG Y C, YU F, et al. Experimental study on mechanical properties of gas hydrate-bearing sediments using Kaolin clay[J]. China Ocean Engineering, 2011, 25(1): 113-122. doi: 10.1007/s13344-011-0009-6
    [8]
    LI Y H, SONG Y C, YU F, et al. Effect of confining pressure on mechanical behavior of methane hydrate-bearing sediments[J]. Petroleum Exploration and Development, 2011, 38(5): 637-640. doi: 10.1016/S1876-3804(11)60061-X
    [9]
    LI Y, SONG Y, LIU W, et al. Analysis of mechanical properties and strength criteria of methane hydrate-bearing sediments[J]. International Journal of Offshore and Polar Engineering, 2012, 22(4): 290-296.
    [10]
    YUN T S, SANTAMARINA J C, RUPPEL C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B4): 106-118.
    [11]
    LI Y H, SONG Y C, LIU W G, et al. A new strength criterion and constitutive model of gas hydrate-bearing sediments under high confining pressures[J]. Journal of Petroleum Science and Engineering, 2013, 109: 45-50. doi: 10.1016/j.petrol.2013.08.010
    [12]
    LI T, LI L Q. DEM analyses of cemented hydrate's effect on the compression behavior of fine-grained sediments[J]. IOP Conference Series: Earth and Environmental Science, 2021, 643(1): 012111. doi: 10.1088/1755-1315/643/1/012111
    [13]
    LI T, LI L Q, LIU J J, et al. Influence of hydrate participation on the mechanical behaviour of fine-grained sediments under one-dimensional compression: a DEM study[J]. Granular Matter, 2021, 24(1): 32.
    [14]
    蒋明镜, 李涛, 胡海军. 结构性黄土双轴压缩试验的离散元数值仿真分析[J]. 岩土工程学报, 2013, 35(增刊2): 241-246. http://cge.nhri.cn/article/id/15388

    JIANG Mingjing, LI Tao, HU Haijun. Numerical simulation of biaxial tests on structured loess by distinct element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 241-246. (in Chinese) http://cge.nhri.cn/article/id/15388
    [15]
    韩振华, 张路青, 周剑, 等. 黏土矿物颗粒特征对含水合物的沉积物力学特性影响研究[J]. 工程地质学报, 2021, 29(6): 1733-1743.

    HAN Zhenhua, ZHANG Luqing, ZHOU Jian, et al. Effect of clay mineral grain characteristics on mechani-cal behaviours of hydrate-bearing sediments[J]. Journal of Engineering Geology, 2021, 29(6): 1733-1743. (in Chinese)
    [16]
    MAKOGON Y F. Hydrates of Natural Gas[M]. Oklahoma: PennWell Books Tulsa, 1981.
    [17]
    ANDERSON R, LLAMEDO M, TOHIDI B, et al. Characteristics of clathrate hydrate equilibria in mesopores and interpretation of experimental data[J]. The Journal of Physical Chemistry B, 2003, 107(15): 3500-3506. doi: 10.1021/jp0263368
    [18]
    UCHIDA T, EBINUMA T, TAKEYA S, et al. Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrates in porous media[J]. The Journal of Physical Chemistry B, 2002, 106(4): 820-826. doi: 10.1021/jp012823w
    [19]
    SEO Y, LEE H E, UCHIDA T. Methane and carbon dioxide hydrate phase behavior in small porous silica gels:   three-phase equilibrium determination and thermodynamic modeling[J]. Langmuir, 2002, 18(24): 9164-9170. doi: 10.1021/la0257844
    [20]
    SMITH D H, WILDER J W, SESHADRI K. Methane hydrate equilibria in silica gels with broad pore-size distributions[J]. AIChE Journal, 2002, 48(2): 393-400. doi: 10.1002/aic.690480222
    [21]
    CHA M J, HU Y, SUM A K. Methane hydrate phase equilibria for systems containing NaCl, KCl, and NH 4 Cl[J]. Fluid Phase Equilibria, 2016, 413: 2-9. doi: 10.1016/j.fluid.2015.08.010
    [22]
    JIANG M J, SUN R H, ARROYO M, et al. Salinity effects on the mechanical behaviour of methane hydrate bearing sediments: a DEM investigation[J]. Computers and Geotechnics, 2021, 133: 104067. doi: 10.1016/j.compgeo.2021.104067
    [23]
    NIU M Y, JIANG M J. DEM modeling mechanical behaviors of remolded and structured clays under constant stress ratio compression tests[M]// Smart Geotechnics for Smart Societies. London: CRC Press, 2023.
    [24]
    蒋明镜, 孙若晗, 李涛, 等. 一个非饱和结构性黄土三维胶结接触模型[J]. 岩土工程学报, 2019, 41(增刊1): 213-216. doi: 10.11779/CJGE2019S1054

    JIANG Mingjing, SUN Ruohan, LI Tao, et al. A three-dimensional cementation contact model for unsaturated structural loess[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 213-216. (in Chinese) doi: 10.11779/CJGE2019S1054
    [25]
    SHEN Z F, JIANG M J. DEM simulation of bonded granular material: Part Ⅱ extension to grain-coating type methane hydrate bearing sand[J]. Computers and Geotechnics, 2016, 75: 225-243. doi: 10.1016/j.compgeo.2016.02.008
    [26]
    蒋明镜, 刘阿森, 李光帅. 南海北部陆坡区深海软土宏微观特征与力学特性研究[J]. 岩土工程学报, 2023, 45(3): 618-626. doi: 10.11779/CJGE20220081

    JIANG Mingjing, LIU Asen, LI Guangshuai. Macro- and micro-characteristics and mechanical properties of deep-sea sediment from South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 618-626. (in Chinese) doi: 10.11779/CJGE20220081
    [27]
    CIANTIA M O, ARROYO M, CALVETTI F, et al. An approach to enhance efficiency of DEM modelling of soils with crushable grains[J]. Géotechnique, 2015, 65(2): 91-110. doi: 10.1680/geot.13.P.218
    [28]
    ZHAO Y P, KONG L, XU R, et al. Mechanical properties of remolded hydrate-bearing clayey-silty sediments[J]. Journal of Natural Gas Science and Engineering, 2022, 100: 104473. doi: 10.1016/j.jngse.2022.104473
    [29]
    牛昴懿. 基于团粒破碎的结构性黏土力学特性的三维离散元模拟研究[D]. 上海: 同济大学, 2022.

    NIU Maoyi. Three-Dimensional Discrete Element Simulation of Mechanical Properties of Structural Clay Based on Particle Breakage[D]. Shanghai: Tongji University, 2022. (in Chinese)
    [30]
    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
    [31]
    PANDA A P, RAO S N. Undrained strength characteristics of an artificially cemented marine clay[J]. Marine Georesources & Geotechnology, 1998, 16(4): 335-353.
  • Related Articles

    [1]LI Bo, WANG Ye, ZOU Liang-chao, YANG Lei. Displacement laws of grout-water two-phase flow in a rough-walled rock fracture through visualization tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1608-1616. DOI: 10.11779/CJGE202209005
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]LENG Wu-ming, AI Xi, XU Fang, ZHANG Qi-shu, YANG Qi, NIE Ru-song, LIU Xiao-hao. Diffusion laws of horizontal additional stress in a new prestressed subgrade[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1445-1454. DOI: 10.11779/CJGE201908008
    [4]ZHANG Lian-zhen, LI Zhi-peng, LIU Ren-tai, ZHANG Qing-song, LI Shu-cai. Simulation tests on fracture-compaction grouting process in sand layer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 665-674. DOI: 10.11779/CJGE201904009
    [5]ZHANG Cong, LIANG Jin-wei, YANG Jun-sheng, ZHANG Gui-jin, XIE Yi-peng, YE Xin-tian. Diffusion mechanism of pulsating seepage grouting slurry with power-law fluid considering interval distribution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2120-2128. DOI: 10.11779/CJGE201811019
    [6]ZHANG Qing-song, WANG Hong-bo, LIU Ren-tai, LI Shu-cai, ZHANG Le-wen, ZHU Guang-xuan, ZHANG Lian-zheng. Infiltration grouting mechanism of porous media considering diffusion paths of grout[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 918-924. DOI: 10.11779/CJGE201805017
    [7]ZHU Ming-ting, ZHANG Qing-song, LI Shu-cai, ZHANG Xiao, TAN Ying-hua, WANG Kai. Effects of properties of surrounding rock on change laws of grouting pressures and diffusion patterns[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1258-1266. DOI: 10.11779/CJGE201707012
    [8]LEI Jin-sheng, LIU Fei, WANG Qian-feng, PENG Gang, JIANG Yuan. Diffusion characteristics and reinforcement mechanics of grouting in non-homogeneous soil strata[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2245-2253. DOI: 10.11779/CJGE201512014
    [9]LUO Ping-ping, WANG Lan-fu, FAN Bo, ZHANG Fang. Numerical simulation of infiltration laws of grouts in random aperture based on multi-fractional Brownian motion[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 309-316.
    [10]ZHANG Min, WANG Xing-hua, WANG You. Diffusion of Herschel–Bulkley slurry in fractures[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 815.
  • Cited by

    Periodical cited type(5)

    1. 邓圣义,周永伟,蒲诃夫,李育超,闵明. 阻隔墙中考虑半透膜效应的污染物迁移数值解. 浙江大学学报(工学版). 2025(02): 342-350 .
    2. 薛强,杜延军,胡黎明,詹良通,李江山. 环境土力学与工程研究进展. 土木工程学报. 2025(03): 83-112 .
    3. 陈杰,唐占元,安之焕,高健,马渊博. 矿粉固化黄土的力学性能及机理研究. 公路. 2025(03): 33-41 .
    4. 刘松玉,蔡国军,张炜,周宏磊,邓永锋. 岩土工程勘察、测试与评价进展. 土木工程学报. 2024(10): 108-124 .
    5. 张志红,杨灏闻,郑九州. 高岭土-膨润土化学渗透膜效应试验及微观机理分析. 岩土工程学报. 2023(09): 1963-1970 . 本站查看

    Other cited types(3)

Catalog

    Article views (155) PDF downloads (47) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return