Citation: | LI Bo, WANG Ye, ZOU Liang-chao, YANG Lei. Displacement laws of grout-water two-phase flow in a rough-walled rock fracture through visualization tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1608-1616. DOI: 10.11779/CJGE202209005 |
[1] |
熊峰, 姜清辉, 陈胜云, 等. 裂隙–孔隙双重介质Darcy-Forchheimer耦合流动模拟方法及工程应用[J]. 岩土工程学报, 2021, 43(11): 2037–2045. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202111012.htm
XIONG Feng, JIANG Qing-hui, CHEN Sheng-yun, et al. Modeling of coupled Darcy-Forchheimer flow in fractured porous media and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2037–2045. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202111012.htm
|
[2] |
STILLE H. Rock Grouting-Theories and Applications[M]. Stockholm: BeFo, Rock Engineering Research Foundation, 2015.
|
[3] |
HÄSSLER L, HÅKANSSON U, STILLE H. Computer-simulated flow of grouts in jointed rock[J]. Tunnelling and Underground Space Technology, 1992, 7(4): 441–446. doi: 10.1016/0886-7798(92)90074-R
|
[4] |
ERIKSSON M, STILLE H, ANDERSSON J. Numerical calculations for prediction of grout spread with account for filtration and varying aperture[J]. Tunnelling and Underground Space Technology, 2000, 15(4): 353–364. doi: 10.1016/S0886-7798(01)00004-9
|
[5] |
HÅKANSSON U, HÄSSLER L, STILLE H. Rheological properties of microfine cement grouts[J]. Tunnelling and Underground Space Technology, 1992, 7(4): 453–458. doi: 10.1016/0886-7798(92)90076-T
|
[6] |
HÅKANSSON U. Rheology of Fresh Cement Based Grouts[D]. Stockholm: Royal Institute of Technology, Sweden, 1993.
|
[7] |
BAKER C. Comments on Paper Rock Stabilization in Rock Mechanics[M]. New York: Springer-Verlag NY, 1974: 22–57.
|
[8] |
王渊. 基于多孔介质迂曲度的牛顿流体渗透注浆机制研究[D]. 昆明: 昆明理工大学, 2020.
WANG Yuan. Study on Newtonian Fluid Infiltration Grouting Mechanism Based on Tortuosity of Porous Media[D]. Kunming: Kunming University of Science and Technology, 2020. (in Chinese)
|
[9] |
WROBEL M. An efficient algorithm of solution for the flow of generalized Newtonian fluid in channels of simple geometries[J]. Rheologica Acta, 2020, 59(9): 651–663. doi: 10.1007/s00397-020-01228-2
|
[10] |
AMADEI B, SAVAGE W Z. An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2): 285–296. doi: 10.1016/S1365-1609(00)00080-0
|
[11] |
章敏, 王星华, 汪优. Herschel-Bulkley浆液在裂隙中的扩散规律研究[J]. 岩土工程学报, 2011, 33(5): 815–820. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105028.htm
ZHANG Min, WANG Xing-hua, WANG You. Diffusion of Herschel-Bulkley slurry in fractures[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 815–820. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105028.htm
|
[12] |
SUI W H, LIU J Y, HU W, et al. Experimental investigation on sealing efficiency of chemical grouting in rock fracture with flowing water[J]. Tunnelling and Underground Space Technology, 2015, 50(22): 239–249. http://www.researchgate.net/profile/Jinyuan_Liu/publication/281101597_Experimental_investigation_on_sealing_efficiency_of_chemical_grouting_in_rock_fracture_with_flowing_water/links/5650ed3b08aefe619b1563cc.pdf
|
[13] |
李博, 蒋宇静. 岩石单节理面剪切与渗流特性的试验研究与数值分析[J]. 岩石力学与工程学报, 2008, 27(12): 2431–2439. doi: 10.3321/j.issn:1000-6915.2008.12.007
LI Bo, JIANG Yu-jing. Experimental study and numerical analysis of shear and flow behaviors of rock with single joint[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2431–2439. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.12.007
|
[14] |
李训刚, 唐超, 张帅, 等. 基于纳米材料的水泥浆液粗糙裂隙注浆数值模拟[J]. 矿业研究与开发, 2021, 41(6): 66–71. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202106013.htm
LI Xun-gang, TANG Chao, ZHANG Shuai, et al. Numerical simulation of cement slurry grouting in rough cracks based on nano-materials[J]. Mining Research and Development, 2021, 41(6): 66–71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202106013.htm
|
[15] |
熊加路. 考虑岩体裂隙粗糙度的动水注浆模拟试验[D]. 徐州: 中国矿业大学, 2017.
XIONG Jia-lu. Experimental Investigation on Grouting into Rock Fracture with Flowing Water by Considering its Roughness[D]. Xuzhou: China University of Mining and Technology, 2017. (in Chinese)
|
[16] |
崔溦, 王利新, 江志安, 等. 基于修正立方定律的岩体粗糙裂隙网络注浆过程模拟研究[J]. 岩土力学, 2021, 42(8): 2250–2258. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108020.htm
CUI Wei, WANG Li-xin, JIANG Zhi-an, et al. Numerical simulation of grouting process in rock mass with rough fracture network based on corrected cubic law[J]. Rock and Soil Mechanics, 2021, 42(8): 2250–2258. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108020.htm
|
[17] |
WANG X C, XIAO F, ZHANG Q S, et al. Grouting characteristics in rock fractures with rough surfaces: apparatus design and experimental study[J]. Measurement, 2021, 184: 109870. doi: 10.1016/j.measurement.2021.109870
|
[18] |
王中才. 微尺度毛细管中不相溶两相驱替特性的实验研究[D]. 武汉: 武汉大学, 2011.
WANG Zhong-cai. Experimental Studies on the Characteristics of Immiscible Displacements in Microscale Quartz Capillaries[D]. Wuhan: Wuhan University, 2011. (in Chinese)
|
[19] |
ZOU L C, HÅKANSSON U, CVETKOVIC V. Cement grout propagation in two-dimensional fracture networks: impact of structure and hydraulic variability[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 1–10. doi: 10.1016/j.ijrmms.2019.01.004
|
[20] |
ZOU L C, HÅKANSSON U, CVETKOVIC V. Two-phase cement grout propagation in homogeneous water-saturated rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 243–249. doi: 10.1016/j.ijrmms.2018.04.017
|
[21] |
李昊宸, 马智, 郭同翠, 等. 毛细管内两相流体驱替规律研究[J]. 科学技术与工程, 2015, 15(36): 155–158, 178. doi: 10.3969/j.issn.1671-1815.2015.36.026
LI Hao-chen, MA Zhi, GUO Tong-cui, et al. The new study of two-phase fluid displacement model[J]. Science Technology and Engineering, 2015, 15(36): 155–158, 178. (in Chinese) doi: 10.3969/j.issn.1671-1815.2015.36.026
|
[22] |
张鹏伟, 胡黎明, MEEGODA J N, 等. 基于岩土介质三维孔隙结构的两相流模型[J]. 岩土工程学报, 2020, 42(1): 37–45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001008.htm
ZHANG Peng-wei, HU Li-ming, MEEGODA J N, et al. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001008.htm
|
[23] |
柳崎, 索丽敏. 地下岩体内多孔介质中裂隙流运移过程的COMSOL Multiphysics仿真模拟[J]. 系统仿真技术, 2019, 15(3): 184–187, 197. doi: 10.3969/j.issn.1673-1964.2019.03.005
LIU Qi, SUO Li-min. COMSOL multiphysics simulation of fracture flow migration in porous media in underground rock mass[J]. System Simulation Technology, 2019, 15(3): 184–187, 197. (in Chinese) doi: 10.3969/j.issn.1673-1964.2019.03.005
|
[24] |
AKHLAGHI AMIRI H A, HAMOUDA A A. Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through dual-permeability porous medium[J]. International Journal of Multiphase Flow, 2013, 52(3): 22–34. http://www.onacademic.com/detail/journal_1000036079789310_b9af.html
|
[25] |
刘振亚, 刘建坤, 李旭, 等. PIV技术在非饱和冻土冻胀模型试验中的实现与灰度相关性分析[J]. 岩土工程学报, 2018, 40(2): 313–320. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802015.htm
LIU Zhen-ya, LIU Jian-kun, LI Xu, et al. Application of PIV in model tests on frozen unsaturated soils and grayscale correlation analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 313–320. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802015.htm
|
[26] |
姜彤, 翟天雅, 张俊然, 等. 基于粒子图像测速技术的黄土径向劈裂试验研究[J]. 岩土力学, 2021, 42(8): 2120–2126, 2140. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108008.htm
JIANG Tong, ZHAI Tian-ya, ZHANG Jun-ran, et al. Diametric splitting tests on loess based on particle image velocimetry technique[J]. Rock and Soil Mechanics, 2021, 42(8): 2120–2126, 2140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108008.htm
|
[27] |
祁沛垚, 邓坚, 谭思超, 等. 基于PIV技术的低雷诺数下棒束通道流场研究[J]. 核动力工程, 2021, 42(1): 18–22. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG202101006.htm
QI Pei-yao, DENG Jian, TAN Si-chao, et al. Research on flow field in rod bundle channel under low Reynolds number using PIV technique[J]. Nuclear Power Engineering, 2021, 42(1): 18–22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG202101006.htm
|
[28] |
莫洋洋. 法向应力作用下粗糙岩石裂隙变形行为研究[D]. 绍兴: 绍兴文理学院, 2020.
MO Yang-yang. Study on Deformation Behavior of Rough-Walled Rock Fracture Subject to Normal Stress[D]. Shaoxing: Shaoxing University, 2020. (in Chinese)
|
[29] |
李博, 崔逍峰, 莫洋洋, 等. 法向应力作用下砂岩错位裂隙变形行为研究[J]. 岩土力学, 2021, 42(7): 1850–1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107010.htm
LI Bo, CUI Xiao-feng, MO Yang-yang, et al. Deformation behavior of dislocated sandstone fractures subject to normal stresses[J]. Rock and Soil Mechanics, 2021, 42(7): 1850–1860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107010.htm
|
[30] |
ZOU L C, LI B, MO Y Y, et al. A high-resolution contact analysis of rough-walled crystalline rock fractures subject to normal stress[J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2141–2155. doi: 10.1007/s00603-019-02034-w
|
[31] |
LI B, ZHAO Z H, JIANG Y J, et al. Contact mechanism of a rock fracture subjected to normal loading and its impact on fast closure behavior during initial stage of fluid flow experiment[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(13): 1431–1449. doi: 10.1002/nag.2365
|
[32] |
陈如梦. 粗糙岩石裂隙中非牛顿流体非线性渗流规律研究[D]. 绍兴: 绍兴文理学院, 2021.
CHEN Ru-meng. Study on Nonlinear Seepage Law of Non Newtonian Fluid in Rough Rock Fractures[D]. Shaoxing: Shaoxing University, 2021. (in Chinese)
|
[33] |
MITSOULIS E. Numerical simulation of calendering viscoplastic fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2008, 154(2/3): 77–88. http://www.onacademic.com/detail/journal_1000034089822310_4cc8.html
|