Citation: | HONG Chenjie, WENG Hanqian, WANG Kai, HUANG Man, TAO Zhigang, DU Shigui. Updating Grasselli's 2D morphology parameter for estimating JRC of rock joints[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1146-1154. DOI: 10.11779/CJGE20230099 |
[1] |
夏才初, 孙宗颀. 工程岩体节理力学[M]. 上海: 同济大学出版社, 2002.
XIA Caichu, SUN Zongqi. Joint Mechanics of Engineering Rock Mass[M]. Shanghai: Tongji University Press, 2002. (in Chinese)
|
[2] |
ZHANG G C, KARAKUS M, TANG H M, et al. A new method estimating the 2D Joint Roughness Coefficient for discontinuity surfaces in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 191-198. doi: 10.1016/j.ijrmms.2014.09.009
|
[3] |
BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287-332. doi: 10.1016/0013-7952(73)90013-6
|
[4] |
BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1): 1-54.
|
[5] |
ISRM. Suggested methods for the quantitative description of discontinuities in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(6): 319-368.
|
[6] |
班力壬, 戚承志, 燕发源, 等. 岩石节理粗糙度新指标及新的JRC确定方法[J]. 煤炭学报, 2019, 44(4): 1059-1065. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201904010.htm
BAN Liren, QI Chengzhi, YAN Fayuan, et al. A new method for determining the JRC with new roughness parameters[J]. Journal of China Coal Society, 2019, 44(4): 1059-1065. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201904010.htm
|
[7] |
陈世江, 常建平, 姬长兴, 等. 两统计参数评估结构面粗糙度探讨及试验验证[J]. 岩石力学与工程学报, 2021, 40(3): 476-489. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103003.htm
CHEN Shijiang, CHANG Jianping, JI Changxing, et al. A two-parameter evaluation method of joint roughness and its experimental verification[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 476-489. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103003.htm
|
[8] |
GRASSELLI G. Shear Strength of Rock Joints Based on Quantified Surface Description[D]. Lausanne: Ecole Polytechnique Federale De Lausanne, 2001.
|
[9] |
TATONE B S A, GRASSELLI G. A new 2D discontinuity roughness parameter and its correlation with JRC[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(8): 1391-1400. doi: 10.1016/j.ijrmms.2010.06.006
|
[10] |
唐志成, 刘泉声, 刘小燕. 节理的剪切力学性质与含三维形貌参数的剪切强度准则比较研究[J]. 岩土工程学报, 2014, 36(5): 873-879. doi: 10.11779/CJGE201405009
TANG Zhicheng, LIU Quansheng, LIU Xiaoyan. Shear behavior of rock joints and comparative study on shear strength criteria with three-dimensional morphology parameters[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 873-879. (in Chinese) doi: 10.11779/CJGE201405009
|
[11] |
YANG J, RONG G, HOU D, et al. Experimental study on peak shear strength criterion for rock joints[J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 821-835. doi: 10.1007/s00603-015-0791-1
|
[12] |
LIU Q S, TIAN Y C, LIU D F, et al. Updates to JRC-JCS model for estimating the peak shear strength of rock joints based on quantified surface description[J]. Engineering Geology, 2017, 228: 282-300. doi: 10.1016/j.enggeo.2017.08.020
|
[13] |
BAN L R, DU W S, QI C Z, et al. Modified 2D roughness parameters for rock joints at two different scales and their correlation with JRC[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 137: 104549. doi: 10.1016/j.ijrmms.2020.104549
|
[14] |
CHEN X, ZENG Y W, YE Y, et al. The physical meaning of Grasselli's morphology parameters and its correlations with several other 2D fracture roughness parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 145: 104854. doi: 10.1016/j.ijrmms.2021.104854
|
[15] |
GRASSELLI G, EGGER P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(1): 25-40. doi: 10.1016/S1365-1609(02)00101-6
|
[16] |
BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical direct shear tests to model the shear behaviour of rock joints[J]. Computers and Geotechnics, 2013, 51: 101-115. doi: 10.1016/j.compgeo.2013.02.003
|
[17] |
KWON T H, HONG E S, CHO G C. Shear behavior of rectangular-shaped asperities in rock joints[J]. KSCE Journal of Civil Engineering, 2010, 14(3): 323-332. doi: 10.1007/s12205-010-0323-1
|
[18] |
TSE R, CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 303-307.
|
[19] |
YANG Z Y, LO S C, DI C C. Reassessing the joint roughness coefficient (JRC) estimation using Z2[J]. Rock Mechanics and Rock Engineering, 2001, 34(3): 243-251. doi: 10.1007/s006030170012
|
[20] |
YU X B, VAYSSADE B. Joint profiles and their roughness parameters[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1991, 28(4): 333-336.
|
[21] |
孙辅庭, 佘成学, 万利台. Barton标准剖面JRC与独立于离散间距的统计参数关系研究[J]. 岩石力学与工程学报, 2014, 33(增刊2): 3539-3544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2019.htm
SUN Futing, SHE Chengxue, WAN Litai. Research on relationship between JRC of barton's standard profiles and statistic parameters independent of sampling interval[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3539-3544. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2019.htm
|
[22] |
张建明, 唐志成, 蒋景东, 等. 统计参数与JRC的定量关系研究[J]. 科学技术与工程, 2015, 15(14): 1-5. doi: 10.3969/j.issn.1671-1815.2015.14.001
(ZHANG Jianming, TANG Zhicheng, JIANG Jingdong, et al. A study of relationships between statistical parameters of typical rock-joint curves and JRC based on image analysis techniques[J]. Science Technology and Engineering, 2015, 15(14): 1-5. doi: 10.3969/j.issn.1671-1815.2015.14.001
|
[23] |
葛云峰, 唐辉明, 王亮清, 等. 天然岩体结构面粗糙度各向异性、尺寸效应、间距效应研究[J]. 岩土工程学报, 2016, 38(1): 170-179. doi: 10.11779/CJGE201601019
GE Yunfeng, TANG Huiming, WANG Liangqing, et al. Anisotropy, scale and interval effects of natural rock discontinuity surface roughness[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 170-179. (in Chinese) doi: 10.11779/CJGE201601019
|
[24] |
王思敬. 论岩石的地质本质性及其岩石力学演绎[J]. 岩石力学与工程学报, 2009, 28(3): 433-450. doi: 10.3321/j.issn:1000-6915.2009.03.001
WANG Sijing. Geological nature of rock and its deduction for rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 433-450. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.03.001
|
[25] |
肖维民, 刘伟超, 朱占元. 基于正反向直剪试验的岩石节理JRC值计算研究[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3098-3106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2010.htm
XIAO Weimin, LIU Weichao, ZHU Zhanyuan. Study on calculation of rock joint JRC value based on forward and reverse direct shear tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3098-3106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2010.htm
|
[26] |
XIA C C, TANG Z C, XIAO W M, et al. New peak shear strength criterion of rock joints based on quantified surface description[J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 387-400. doi: 10.1007/s00603-013-0395-6
|
[1] | XIAO Zhiyong, SUN Xiaoxiang, WANG Gang, WANG Mingzhen, JIA Wenwen, JIANG Feng, ZHENG Chengcheng. Model for non-equilibrium evolution coal permeability of whole process under influences of gas pressure difference[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 355-364. DOI: 10.11779/CJGE20231012 |
[2] | CHENG Xian-zhen, CHEN Lian-jun, LUAN Heng-jie, WHANG Chun-guang, JIANG Yu-jing. Influences of softening behaviour of coal on evolution of its permeability by considering matrix-fracture interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1890-1898. DOI: 10.11779/CJGE202210015 |
[3] | XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, JIANG Yu-jing, YU Jun-hong. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. DOI: 10.11779/CJGE202112007 |
[4] | ZHOU Li-pei, TANG Xiao-wu, CHENG Guan-chu, SUN Zu-feng. Influencing factors for calculating clay permeability using asymptotic expansion method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1205-1211. DOI: 10.11779/CJGE201807006 |
[5] | WANG Bing-hui, WANG Zhi-hua, JIANG Peng-ming, ZHOU Ai-zhao. Electrical resistivity characteristics of saturated sand with varied porosities[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1739-1745. DOI: 10.11779/CJGE201709024 |
[6] | CHEN Shi-wan, YANG Chun-he, LIU Peng-jun, WEI Xiang. Evolution of cracks and permeability of granites suffering from different thermal damages[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1493-1500. DOI: 10.11779/CJGE201708017 |
[7] | CAO Yuan, NIU Guan-yi, WANG Tie-liang. In-situ measurement of rock permeability based on pneumatic tests in boreholes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 534-539. DOI: 10.11779/CJGE201703018 |
[8] | KONG Qian, WANG Huan-ling, XU Wei-ya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. DOI: 10.11779/CJGE201510018 |
[9] | ZOU Hang, LIU Jian-feng, BIAN Yu, ZHOU Zhi-wei, ZHUO Yue. Experimental study on mechanical and permeability properties of sandstone with different granularities[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1462-1468. DOI: 10.11779/CJGE201508015 |
[10] | WU Wen, HOU Zhengmeng, YANG Chunhe. Investigations on permeability of rock salt[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 746-749. |
1. |
孙士富,范晓明,王立华,王生浩,王舜嵘,张思源. 冻融循环作用下钢纤维混凝土的抗冲击性能试验研究. 混凝土与水泥制品. 2025(01): 59-63+69 .
![]() | |
2. |
秦立科,周效丞,孔德翊,甄刚,谭可馨,郭斌. 温度循环下壁画地仗层与支撑体接触面力学性能. 西安科技大学学报. 2025(01): 153-160 .
![]() | |
3. |
何菲,陈明伟,王旭,陈航杰,杨进财. 高温冻结粉土-不同粗糙度混凝土接触面蠕变特性试验研究. 公路交通科技. 2024(01): 18-24 .
![]() | |
4. |
唐丽云,王鹏宇,郑娟娟,于永堂,金龙,崔玉鹏,罗滔. 冰水赋存演化下冻结土石混合体-结构界面强度劣化机制及模型. 岩土工程学报. 2024(05): 988-997 .
![]() | |
5. |
王寅栋,路建国,万旭升,谭俐伶,邓菲,周小勋. 冻融循环作用下土石混合体水热传输及冻融特性研究. 工业建筑. 2024(03): 174-181 .
![]() | |
6. |
胡峻晖,崔宏环,谢直树. 粉粒含量对风积砂-水泥接触面冻结强度影响试验研究. 河北建筑工程学院学报. 2024(01): 86-92 .
![]() | |
7. |
刘慧,徐海南,任建喜,申艳军,贾海梁,奚家米,唐丽云,郁金捷,魏尧. 寒区隧道围岩–喷层界面增黏与抗冻试验研究. 岩石力学与工程学报. 2024(06): 1383-1396 .
![]() | |
8. |
唐丽云,丁冰,郑建国,许培智,邱培勇. 寒区冻土桩基承载特性研究现状与展望. 岩土工程技术. 2024(03): 253-262 .
![]() | |
9. |
胡峻晖,崔宏环,王跃庚,李续靖. 细粒含量对冻土-桩界面剪切特性影响研究. 力学季刊. 2024(03): 842-854 .
![]() | |
10. |
姜世伟,郭良宇. 恶劣环境下机制砂混凝土弹性模量试验研究. 公路. 2024(10): 374-379 .
![]() | |
11. |
杨俊超,夏元友,崔飞龙,李丽华,吴炯晖,陈晨,田亮. 循环荷载作用下粉质黏土-混凝土界面强度预测研究. 岩土工程学报. 2024(S2): 194-199 .
![]() | |
12. |
刘华,王梦南,冯旭晨,王松鹤,丁九龙. 酸碱溶液污染对黄土-混凝土界面剪切特性影响试验研究. 西安建筑科技大学学报(自然科学版). 2023(01): 111-117 .
![]() | |
13. |
何菲,王旭. 电气化改造工程接触网基础冻结强度试验研究. 铁道工程学报. 2023(01): 5-12 .
![]() | |
14. |
马江平. 细粒含量对冻土-桩基界面力学性质的影响. 河北水利电力学院学报. 2023(02): 17-22+46 .
![]() | |
15. |
唐丽云,黄涛,汪卫兵,金龙,孙强,李国玉,罗滔. 冻融循环下土石混合体-混凝土界面剪切特性及孔隙结构演化特征试验研究. 中南大学学报(自然科学版). 2023(05): 1954-1969 .
![]() | |
16. |
唐丽云,李屹恒,于永堂,金龙,高志刚,贾海梁,孙强,刘晨昕. 冻融作用下土石混合体-混凝土界面强度劣化、孔隙结构演化及颗粒运移研究. 冰川冻土. 2023(03): 1047-1062 .
![]() | |
17. |
周亚龙,王旭,蒋代军,刘德仁,何菲,胡渊,刘平. 考虑冰膜厚度的桩–土界面剪切特性及冻拔计算. 岩石力学与工程学报. 2023(11): 2806-2819 .
![]() | |
18. |
崔凯,许鹏飞,黄井镜,于翔鹏,汪小海. 土遗址裂隙注浆浆-土界面粘结性能干旱环境耐久性对比. 吉林大学学报(工学版). 2023(10): 2856-2868 .
![]() | |
19. |
孙厚超,杨平,卜迎春,石飞停. 冻黏土与结构接触界面层单剪损伤模型. 森林工程. 2022(01): 115-123 .
![]() | |
20. |
吴承亮,邬远康,赵川. 桩土界面参数对单桩极限承载力的影响. 华南地震. 2022(01): 113-118 .
![]() | |
21. |
刘杰,奚家米,贾海梁,王新刚. 冻融作用下岩石-混凝土界面损伤研究进展. 低温建筑技术. 2022(04): 25-29 .
![]() | |
22. |
马小涵,薛珂,高樯,张明礼,刘建平,谢军,向卿,杨明东. 衬砌粗糙度对季节冻土区渠基土-衬砌接触面间峰值抗剪强度的影响. 冰川冻土. 2022(02): 535-544 .
![]() | |
23. |
蔡正银,张晨,朱洵,黄英豪,王羿. 高寒区长距离供水工程能力提升与安全保障技术. 岩土工程学报. 2022(07): 1239-1254 .
![]() | |
24. |
刘飞禹,赵川,孙宏磊,张诗珣. 含盐量对硫酸钠盐渍土–混凝土界面剪切特性的影响研究. 岩石力学与工程学报. 2022(08): 1680-1688 .
![]() | |
25. |
金鑫,王铁行,郝延周,赵再昆,张亮,张猛. 桩间黄土卸荷湿陷过程中卸荷量计算方法初探. 岩土力学. 2022(09): 2399-2409 .
![]() | |
26. |
谢一鸣,陈拓,王建州,谷素兵,朱飞跃. 冻结黏土-混凝土界面动力剪切特性研究. 铁道科学与工程学报. 2022(09): 2637-2646 .
![]() | |
27. |
丑亚玲,原冰月. 基于冻融作用的固化硫酸盐渍土-混凝土界面力学行为. 科学技术与工程. 2022(31): 13914-13921 .
![]() | |
28. |
张晨,王羿,韩孝峰,金龙. 考虑接触损伤效应的衬砌渠道冻胀过程数值模拟方法. 岩土工程学报. 2022(S2): 188-193 .
![]() | |
29. |
鲁洋,刘斯宏,张勇敢,杨蒙,王柳江,李卓. 土石坝心墙掺砾土的渗透特性冻融演化规律试验研究. 水利学报. 2021(05): 603-611 .
![]() | |
30. |
闫斌,娄徐瑞利,谢浩然,陈伟,程瑞琦. 冻胀冻融作用下材料劣化对板式无砟轨道性能的影响. 交通运输工程学报. 2021(05): 62-73 .
![]() | |
31. |
孙厚超,杨平,张忠扩,陆仁艳. 循环剪切下冻黏土与结构接触面剪切异向性研究. 森林工程. 2021(06): 82-89 .
![]() | |
32. |
马小涵,薛珂,郑涛,刘建平,阳峰. 季冻区灌渠-衬砌接触面冻胀破坏现状分析. 灌溉排水学报. 2020(S2): 60-65 .
![]() |