HONG Chenjie, WENG Hanqian, WANG Kai, HUANG Man, TAO Zhigang, DU Shigui. Updating Grasselli's 2D morphology parameter for estimating JRC of rock joints[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1146-1154. DOI: 10.11779/CJGE20230099
    Citation: HONG Chenjie, WENG Hanqian, WANG Kai, HUANG Man, TAO Zhigang, DU Shigui. Updating Grasselli's 2D morphology parameter for estimating JRC of rock joints[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1146-1154. DOI: 10.11779/CJGE20230099

    Updating Grasselli's 2D morphology parameter for estimating JRC of rock joints

    More Information
    • Received Date: February 07, 2023
    • Available Online: July 05, 2023
    • The Grasselli's 2D morphology parameter θG used to estimate the joint roughness coefficient (JRC) is questionable, because it only considers the apparent inclination of the shear side and ignores the internal undulation angle. From the physical meaning of θG, it is found that the contribution of internal bulge height in the climbing area to surface roughness can be expressed as the slope angle at the total climbing horizontal distance. The sum of the slope angles provided by all climbing areas is defined as the roughness of joint internal undulating. The apparent average inclination angle θG and the internal average slope angle θH are superimposed to propose a new roughness parameter θC for rock joints. The θC of ten standard JRC profiles is obtained, and its relationship to JRC is then analyzed to establish an estimation formula for JRC based on θC. The proposed parameter θC under different sampling intervals and different sampling directions is calculated. The results show that θC has fractal characteristics and can reflect the anisotropy of joint surface morphology. Further, the estimation formula for JRC is applied to the JRC-JCS model. By comparing the experimental results obtained from the existing researches and the predicted results under different shear strength models, it is verified that the estimated JRC based on θC can accurately predict the peak shear strength of joints. Finally, the new parameter θC is extended to 3D form, and a 3D roughness parameter (θC)3D is proposed to capture the anisotropic characteristics of joint morphology.
    • [1]
      夏才初, 孙宗颀. 工程岩体节理力学[M]. 上海: 同济大学出版社, 2002.

      XIA Caichu, SUN Zongqi. Joint Mechanics of Engineering Rock Mass[M]. Shanghai: Tongji University Press, 2002. (in Chinese)
      [2]
      ZHANG G C, KARAKUS M, TANG H M, et al. A new method estimating the 2D Joint Roughness Coefficient for discontinuity surfaces in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 191-198. doi: 10.1016/j.ijrmms.2014.09.009
      [3]
      BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287-332. doi: 10.1016/0013-7952(73)90013-6
      [4]
      BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1): 1-54.
      [5]
      ISRM. Suggested methods for the quantitative description of discontinuities in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(6): 319-368.
      [6]
      班力壬, 戚承志, 燕发源, 等. 岩石节理粗糙度新指标及新的JRC确定方法[J]. 煤炭学报, 2019, 44(4): 1059-1065. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201904010.htm

      BAN Liren, QI Chengzhi, YAN Fayuan, et al. A new method for determining the JRC with new roughness parameters[J]. Journal of China Coal Society, 2019, 44(4): 1059-1065. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201904010.htm
      [7]
      陈世江, 常建平, 姬长兴, 等. 两统计参数评估结构面粗糙度探讨及试验验证[J]. 岩石力学与工程学报, 2021, 40(3): 476-489. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103003.htm

      CHEN Shijiang, CHANG Jianping, JI Changxing, et al. A two-parameter evaluation method of joint roughness and its experimental verification[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 476-489. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103003.htm
      [8]
      GRASSELLI G. Shear Strength of Rock Joints Based on Quantified Surface Description[D]. Lausanne: Ecole Polytechnique Federale De Lausanne, 2001.
      [9]
      TATONE B S A, GRASSELLI G. A new 2D discontinuity roughness parameter and its correlation with JRC[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(8): 1391-1400. doi: 10.1016/j.ijrmms.2010.06.006
      [10]
      唐志成, 刘泉声, 刘小燕. 节理的剪切力学性质与含三维形貌参数的剪切强度准则比较研究[J]. 岩土工程学报, 2014, 36(5): 873-879. doi: 10.11779/CJGE201405009

      TANG Zhicheng, LIU Quansheng, LIU Xiaoyan. Shear behavior of rock joints and comparative study on shear strength criteria with three-dimensional morphology parameters[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 873-879. (in Chinese) doi: 10.11779/CJGE201405009
      [11]
      YANG J, RONG G, HOU D, et al. Experimental study on peak shear strength criterion for rock joints[J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 821-835. doi: 10.1007/s00603-015-0791-1
      [12]
      LIU Q S, TIAN Y C, LIU D F, et al. Updates to JRC-JCS model for estimating the peak shear strength of rock joints based on quantified surface description[J]. Engineering Geology, 2017, 228: 282-300. doi: 10.1016/j.enggeo.2017.08.020
      [13]
      BAN L R, DU W S, QI C Z, et al. Modified 2D roughness parameters for rock joints at two different scales and their correlation with JRC[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 137: 104549. doi: 10.1016/j.ijrmms.2020.104549
      [14]
      CHEN X, ZENG Y W, YE Y, et al. The physical meaning of Grasselli's morphology parameters and its correlations with several other 2D fracture roughness parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 145: 104854. doi: 10.1016/j.ijrmms.2021.104854
      [15]
      GRASSELLI G, EGGER P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(1): 25-40. doi: 10.1016/S1365-1609(02)00101-6
      [16]
      BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical direct shear tests to model the shear behaviour of rock joints[J]. Computers and Geotechnics, 2013, 51: 101-115. doi: 10.1016/j.compgeo.2013.02.003
      [17]
      KWON T H, HONG E S, CHO G C. Shear behavior of rectangular-shaped asperities in rock joints[J]. KSCE Journal of Civil Engineering, 2010, 14(3): 323-332. doi: 10.1007/s12205-010-0323-1
      [18]
      TSE R, CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 303-307.
      [19]
      YANG Z Y, LO S C, DI C C. Reassessing the joint roughness coefficient (JRC) estimation using Z2[J]. Rock Mechanics and Rock Engineering, 2001, 34(3): 243-251. doi: 10.1007/s006030170012
      [20]
      YU X B, VAYSSADE B. Joint profiles and their roughness parameters[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1991, 28(4): 333-336.
      [21]
      孙辅庭, 佘成学, 万利台. Barton标准剖面JRC与独立于离散间距的统计参数关系研究[J]. 岩石力学与工程学报, 2014, 33(增刊2): 3539-3544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2019.htm

      SUN Futing, SHE Chengxue, WAN Litai. Research on relationship between JRC of barton's standard profiles and statistic parameters independent of sampling interval[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3539-3544. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2019.htm
      [22]
      张建明, 唐志成, 蒋景东, 等. 统计参数与JRC的定量关系研究[J]. 科学技术与工程, 2015, 15(14): 1-5. doi: 10.3969/j.issn.1671-1815.2015.14.001

      (ZHANG Jianming, TANG Zhicheng, JIANG Jingdong, et al. A study of relationships between statistical parameters of typical rock-joint curves and JRC based on image analysis techniques[J]. Science Technology and Engineering, 2015, 15(14): 1-5. doi: 10.3969/j.issn.1671-1815.2015.14.001
      [23]
      葛云峰, 唐辉明, 王亮清, 等. 天然岩体结构面粗糙度各向异性、尺寸效应、间距效应研究[J]. 岩土工程学报, 2016, 38(1): 170-179. doi: 10.11779/CJGE201601019

      GE Yunfeng, TANG Huiming, WANG Liangqing, et al. Anisotropy, scale and interval effects of natural rock discontinuity surface roughness[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 170-179. (in Chinese) doi: 10.11779/CJGE201601019
      [24]
      王思敬. 论岩石的地质本质性及其岩石力学演绎[J]. 岩石力学与工程学报, 2009, 28(3): 433-450. doi: 10.3321/j.issn:1000-6915.2009.03.001

      WANG Sijing. Geological nature of rock and its deduction for rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 433-450. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.03.001
      [25]
      肖维民, 刘伟超, 朱占元. 基于正反向直剪试验的岩石节理JRC值计算研究[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3098-3106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2010.htm

      XIAO Weimin, LIU Weichao, ZHU Zhanyuan. Study on calculation of rock joint JRC value based on forward and reverse direct shear tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3098-3106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2010.htm
      [26]
      XIA C C, TANG Z C, XIAO W M, et al. New peak shear strength criterion of rock joints based on quantified surface description[J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 387-400. doi: 10.1007/s00603-013-0395-6
    • Related Articles

      [1]XIAO Zhiyong, SUN Xiaoxiang, WANG Gang, WANG Mingzhen, JIA Wenwen, JIANG Feng, ZHENG Chengcheng. Model for non-equilibrium evolution coal permeability of whole process under influences of gas pressure difference[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 355-364. DOI: 10.11779/CJGE20231012
      [2]CHENG Xian-zhen, CHEN Lian-jun, LUAN Heng-jie, WHANG Chun-guang, JIANG Yu-jing. Influences of softening behaviour of coal on evolution of its permeability by considering matrix-fracture interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1890-1898. DOI: 10.11779/CJGE202210015
      [3]XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, JIANG Yu-jing, YU Jun-hong. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. DOI: 10.11779/CJGE202112007
      [4]ZHOU Li-pei, TANG Xiao-wu, CHENG Guan-chu, SUN Zu-feng. Influencing factors for calculating clay permeability using asymptotic expansion method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1205-1211. DOI: 10.11779/CJGE201807006
      [5]WANG Bing-hui, WANG Zhi-hua, JIANG Peng-ming, ZHOU Ai-zhao. Electrical resistivity characteristics of saturated sand with varied porosities[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1739-1745. DOI: 10.11779/CJGE201709024
      [6]CHEN Shi-wan, YANG Chun-he, LIU Peng-jun, WEI Xiang. Evolution of cracks and permeability of granites suffering from different thermal damages[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1493-1500. DOI: 10.11779/CJGE201708017
      [7]CAO Yuan, NIU Guan-yi, WANG Tie-liang. In-situ measurement of rock permeability based on pneumatic tests in boreholes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 534-539. DOI: 10.11779/CJGE201703018
      [8]KONG Qian, WANG Huan-ling, XU Wei-ya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. DOI: 10.11779/CJGE201510018
      [9]ZOU Hang, LIU Jian-feng, BIAN Yu, ZHOU Zhi-wei, ZHUO Yue. Experimental study on mechanical and permeability properties of sandstone with different granularities[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1462-1468. DOI: 10.11779/CJGE201508015
      [10]WU Wen, HOU Zhengmeng, YANG Chunhe. Investigations on permeability of rock salt[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 746-749.
    • Cited by

      Periodical cited type(32)

      1. 孙士富,范晓明,王立华,王生浩,王舜嵘,张思源. 冻融循环作用下钢纤维混凝土的抗冲击性能试验研究. 混凝土与水泥制品. 2025(01): 59-63+69 .
      2. 秦立科,周效丞,孔德翊,甄刚,谭可馨,郭斌. 温度循环下壁画地仗层与支撑体接触面力学性能. 西安科技大学学报. 2025(01): 153-160 .
      3. 何菲,陈明伟,王旭,陈航杰,杨进财. 高温冻结粉土-不同粗糙度混凝土接触面蠕变特性试验研究. 公路交通科技. 2024(01): 18-24 .
      4. 唐丽云,王鹏宇,郑娟娟,于永堂,金龙,崔玉鹏,罗滔. 冰水赋存演化下冻结土石混合体-结构界面强度劣化机制及模型. 岩土工程学报. 2024(05): 988-997 . 本站查看
      5. 王寅栋,路建国,万旭升,谭俐伶,邓菲,周小勋. 冻融循环作用下土石混合体水热传输及冻融特性研究. 工业建筑. 2024(03): 174-181 .
      6. 胡峻晖,崔宏环,谢直树. 粉粒含量对风积砂-水泥接触面冻结强度影响试验研究. 河北建筑工程学院学报. 2024(01): 86-92 .
      7. 刘慧,徐海南,任建喜,申艳军,贾海梁,奚家米,唐丽云,郁金捷,魏尧. 寒区隧道围岩–喷层界面增黏与抗冻试验研究. 岩石力学与工程学报. 2024(06): 1383-1396 .
      8. 唐丽云,丁冰,郑建国,许培智,邱培勇. 寒区冻土桩基承载特性研究现状与展望. 岩土工程技术. 2024(03): 253-262 .
      9. 胡峻晖,崔宏环,王跃庚,李续靖. 细粒含量对冻土-桩界面剪切特性影响研究. 力学季刊. 2024(03): 842-854 .
      10. 姜世伟,郭良宇. 恶劣环境下机制砂混凝土弹性模量试验研究. 公路. 2024(10): 374-379 .
      11. 杨俊超,夏元友,崔飞龙,李丽华,吴炯晖,陈晨,田亮. 循环荷载作用下粉质黏土-混凝土界面强度预测研究. 岩土工程学报. 2024(S2): 194-199 . 本站查看
      12. 刘华,王梦南,冯旭晨,王松鹤,丁九龙. 酸碱溶液污染对黄土-混凝土界面剪切特性影响试验研究. 西安建筑科技大学学报(自然科学版). 2023(01): 111-117 .
      13. 何菲,王旭. 电气化改造工程接触网基础冻结强度试验研究. 铁道工程学报. 2023(01): 5-12 .
      14. 马江平. 细粒含量对冻土-桩基界面力学性质的影响. 河北水利电力学院学报. 2023(02): 17-22+46 .
      15. 唐丽云,黄涛,汪卫兵,金龙,孙强,李国玉,罗滔. 冻融循环下土石混合体-混凝土界面剪切特性及孔隙结构演化特征试验研究. 中南大学学报(自然科学版). 2023(05): 1954-1969 .
      16. 唐丽云,李屹恒,于永堂,金龙,高志刚,贾海梁,孙强,刘晨昕. 冻融作用下土石混合体-混凝土界面强度劣化、孔隙结构演化及颗粒运移研究. 冰川冻土. 2023(03): 1047-1062 .
      17. 周亚龙,王旭,蒋代军,刘德仁,何菲,胡渊,刘平. 考虑冰膜厚度的桩–土界面剪切特性及冻拔计算. 岩石力学与工程学报. 2023(11): 2806-2819 .
      18. 崔凯,许鹏飞,黄井镜,于翔鹏,汪小海. 土遗址裂隙注浆浆-土界面粘结性能干旱环境耐久性对比. 吉林大学学报(工学版). 2023(10): 2856-2868 .
      19. 孙厚超,杨平,卜迎春,石飞停. 冻黏土与结构接触界面层单剪损伤模型. 森林工程. 2022(01): 115-123 .
      20. 吴承亮,邬远康,赵川. 桩土界面参数对单桩极限承载力的影响. 华南地震. 2022(01): 113-118 .
      21. 刘杰,奚家米,贾海梁,王新刚. 冻融作用下岩石-混凝土界面损伤研究进展. 低温建筑技术. 2022(04): 25-29 .
      22. 马小涵,薛珂,高樯,张明礼,刘建平,谢军,向卿,杨明东. 衬砌粗糙度对季节冻土区渠基土-衬砌接触面间峰值抗剪强度的影响. 冰川冻土. 2022(02): 535-544 .
      23. 蔡正银,张晨,朱洵,黄英豪,王羿. 高寒区长距离供水工程能力提升与安全保障技术. 岩土工程学报. 2022(07): 1239-1254 . 本站查看
      24. 刘飞禹,赵川,孙宏磊,张诗珣. 含盐量对硫酸钠盐渍土–混凝土界面剪切特性的影响研究. 岩石力学与工程学报. 2022(08): 1680-1688 .
      25. 金鑫,王铁行,郝延周,赵再昆,张亮,张猛. 桩间黄土卸荷湿陷过程中卸荷量计算方法初探. 岩土力学. 2022(09): 2399-2409 .
      26. 谢一鸣,陈拓,王建州,谷素兵,朱飞跃. 冻结黏土-混凝土界面动力剪切特性研究. 铁道科学与工程学报. 2022(09): 2637-2646 .
      27. 丑亚玲,原冰月. 基于冻融作用的固化硫酸盐渍土-混凝土界面力学行为. 科学技术与工程. 2022(31): 13914-13921 .
      28. 张晨,王羿,韩孝峰,金龙. 考虑接触损伤效应的衬砌渠道冻胀过程数值模拟方法. 岩土工程学报. 2022(S2): 188-193 . 本站查看
      29. 鲁洋,刘斯宏,张勇敢,杨蒙,王柳江,李卓. 土石坝心墙掺砾土的渗透特性冻融演化规律试验研究. 水利学报. 2021(05): 603-611 .
      30. 闫斌,娄徐瑞利,谢浩然,陈伟,程瑞琦. 冻胀冻融作用下材料劣化对板式无砟轨道性能的影响. 交通运输工程学报. 2021(05): 62-73 .
      31. 孙厚超,杨平,张忠扩,陆仁艳. 循环剪切下冻黏土与结构接触面剪切异向性研究. 森林工程. 2021(06): 82-89 .
      32. 马小涵,薛珂,郑涛,刘建平,阳峰. 季冻区灌渠-衬砌接触面冻胀破坏现状分析. 灌溉排水学报. 2020(S2): 60-65 .

      Other cited types(40)

    Catalog

      Article views PDF downloads Cited by(72)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return