• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Bing-hui, WANG Zhi-hua, JIANG Peng-ming, ZHOU Ai-zhao. Electrical resistivity characteristics of saturated sand with varied porosities[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1739-1745. DOI: 10.11779/CJGE201709024
Citation: WANG Bing-hui, WANG Zhi-hua, JIANG Peng-ming, ZHOU Ai-zhao. Electrical resistivity characteristics of saturated sand with varied porosities[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1739-1745. DOI: 10.11779/CJGE201709024

Electrical resistivity characteristics of saturated sand with varied porosities

More Information
  • Received Date: June 01, 2016
  • Published Date: September 24, 2017
  • In order to investigate the temporal and spatial characteristics of physical properties of sand, the studies on electrical resistivity properties of saturated sand with varied porosities should be carried out primarily. Firstly, the resistivity measurement devices are developed by using the two-electrode AC electrical method, and the reliability of the devices is verified by considering the effects of electrifying time and contact resistance. Using the devices, the electrical resistivities of sand under varied effects of resistivity of pore water, saturation and porosity of sand are studied. And the resistivity of saturated sand varing with the porosity is highlighted. The results show that the effect of conduction history can be ignored using the devices, and that the contact resistance between electrode and soil is remarkably related to the saturation of sand. The influences of the resistivity of water, saturation and porosity of sand on the resistivity of sand have a decreasing order. There is a remarkable power function between the resistivity of saturated sand and its porosity. Their influence sequences on the resistance of sand are sorted by the noise-signal ratio and range analysis.
  • [1]
    李广信. 论土骨架与渗透力[J]. 岩土工程学报. 2016, 38(8): 1522-1528. (LI Guang-xing. On soil skeleton and seepage force[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1522-1528. (in Chinese))
    [2]
    DESRUES J, CHAMBON R, MOKNI M, et al. Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography[J]. Géotechnique, 1996, 46(3): 529-546.
    [3]
    DESRUES J, VIGGIANI G. Strain localization in sand: an overview of the experimental results obtained in grenoble using stereophotogrammetry[J]. Numerical Methods & Algorithms, 2004, 28(4): 279-321.
    [4]
    FROST J D, JANG D. Evolution of sand microstructure during shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(2): 116-130.
    [5]
    刘松玉, 查甫生, 于小军. 土的电阻率室内测试技术研究[J]. 工程地质学报, 2006, 14(2): 216-222. (LIU Song-yu, ZHA Fu-sheng, YU Xiao-jun. Laboratory measurement techniques of the electrical resistivity of soils[J]. Journal of Engineering Geology, 2006, 14(2): 216-222. (in Chinese))
    [6]
    ARCHIE G E. The electric resistivity logs as an aid in determining some reservoir characteristics[J]. American Institute of Mining, Metallurgical and Petroleum Engineers, 1942, 146: 54-61.
    [7]
    ARULANANDAN K, MURALEETHARAN K. Level ground soil‐liquefaction analysis using in situ properties: i[J]. Journal of Geotechnical Engineering, 1988, 114(7): 753-770.
    [8]
    ARULANANDAN K, MURALEETHARAN K. Level ground soil‐liquefaction analysis using in situ properties: ii[J]. Journal of Geotechnical Engineering, 1988, 114(7): 771-790.
    [9]
    THEVANAYAGAM S. Electrical response of two-phase soil. Theory and applications[J]. Journal of Geotechnical Engineering, 1993, 119(8): 1250-1275.
    [10]
    SAMOUËLIAN A, COUSIN I, TABBAGH A, et al. Electrical resistivity survey in soil science: a review[J]. Soil and Tillage Research, 2005, 83(2): 173-193.
    [11]
    SON Y, OH M, LEE S. Estimation of soil weathering degree using electrical resistivity[J]. Environmental Earth Sciences, 2010, 59(6): 1319-1326.
    [12]
    DASH S R, SURESH KUMAR N, BHATTACHARYA S, et al. Characterisation of ert as a new non-invasive monitoring method of liquefaction process[C]// Joint Conference Proceedings: 7th International Conference on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake Engineering (5ICEE). Tokyo, 2010.
    [13]
    JINGUUJI M, TOPRAK S, KUNIMATSU S. Visualization technique for liquefaction process in chamber experiments by using electrical resistivity monitoring[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(3): 191-199.
    [14]
    FRIEDMAN S P. Soil properties influencing apparent electrical conductivity: a review[J]. Computers and Electronics in Agriculture, 2005, 46: 45-70.
    [15]
    刘国华, 王振宇, 黄建平. 土的电阻率特性及其工程应用研究[J]. 岩土工程学报, 2004, 26(1): 83-87. (LIU Guo-hua, WANG Zhen-yu, HUANG Jian-ping. Research on electrical resistivity feature of soil and its application[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 83-87. (in Chinese))
    [16]
    周 蜜, 王建国, 黄松波, 等. 土壤电阻率测量影响因素的试验研究[J]. 岩土力学, 2011, 32(11): 3269-3275. (ZHOU Mi, WANG Jian-guo, HUANG Song-bo, et al. Experimental investigation on influencing factors in soil resistivity measurement[J]. Rock and Soil Mechanics, 2011, 32(11): 3269-3275. (in Chinese))
    [17]
    蔡国军, 张 涛, 刘松玉, 等. 江苏海相黏土电阻率与岩土特性参数间相关性研究[J]. 岩土工程学报, 2013, 35(8): 1470-1477. (CAI Guo-jun, ZHANG Tao, LIU Song-yu, et al. Relationship between electrical resistivity and geotechnical characteristic parameters for Jiangsu marine clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1470-1477. (in Chinese))
    [18]
    GUOJUN C, SONGYU L, PUPPALA A J. Liquefaction assessments using seismic piezocone penetration (scptu) test investigations in tangshan region in china[J]. Soil Dynamics and Earthquake Engineering, 2012, 41: 141-150.
    [19]
    CAI G J, LIU S Y, TONG L H. Field evaluation of deformation characteristics of a lacustrine clay deposit using seismic piezocone tests[J]. Engineering Geology, 2010, 116(3): 251-260.
    [20]
    CAI G J, LIU S Y, TONG L H, et al. Assessment of direct cpt and cptu methods for predicting the ultimate bearing capacity of single piles[J]. Engineering Geology, 2009, 104(3): 211-222.
    [21]
    蔡国军, 刘松玉, 邵光辉, 等. 基于电阻率静力触探的海相黏土成因特性分析[J]. 岩土工程学报, 2008, 30(4): 529-535. (CAI Guo-jun, LIU Song-yu, SHAO Guang-hui, et al. Analysis of formation characteristics of marine clay based on resistivity cone penetration test(RCPT)[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 529-535. (in Chinese))
    [22]
    蔡国军, 刘松玉, 童立元, 等. 多功能孔压静力触探(CPTU)试验研究[J]. 工程勘察, 2007(3): 10-15. (CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Research on the versatile piezocone penetration test (CPTU)[J]. Geotechnical Investigation & Surveying, 2007(3): 10-15. (in Chinese))
    [23]
    蔡国军, 刘松玉, 童立元, 等. 电阻率静力触探测试技术与分析[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3127-3133. (CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Resistivity cone penetration test technique and data interpretation[J]. Chin J Rock Mech Eng, 2007, 26(S1): 3127-3133.(in Chinese))
    [24]
    CAI G J, LIU S Y, PUPPALA A J. Comparison of cpt charts for soil classification using pcpt data: example from clay deposits in Jiangsu province, China[J]. Engineering Geology, 2011, 121(1): 89-96.
    [25]
    查甫生, 刘松玉, 杜延军, 等. 击实黄土的电阻率特性试验研究[J]. 岩土力学, 2011, 32(增刊2): 155-158. (ZHA Fu-sheng, LIU Song-yu, DU Yan-jun, et al. Characteristics of electrical resistivity of compacted loess[J]. Rock and Soil Mechanics, 2011, 32(S2): 155-158. (in Chinese))
    [26]
    查甫生, 刘松玉, 杜延军, 等. 基于电阻率的非饱和土基质吸力预测[J]. 岩土力学, 2010, 31 (3): 1003-1008. (ZHA Fu-sheng, LIU Song-yu, DU Yan-jun, et al. Prediction of matric suction of unsaturated soil based on electrical resistivity[J]. Rock and Soil Mechanics, 2010, 31(3): 1003-1008. (in Chinese))
    [27]
    查甫生, 刘松玉, 杜延军, 等. 电阻率法评价膨胀土改良的物化过程[J]. 岩土力学, 2009, 30(6): 1711-1718. (ZHA Fu-sheng, LIU Song-yu, DU Yan-jun, et al. Evaluation of physicochemical process in stabilized expansive soils using electrical resistivity method[J]. Rock and Soil Mechanics, 2009, 30(6): 1711-1718. (in Chinese))
    [28]
    查甫生, 刘松玉. 土的电阻率理论及其应用探讨[J]. 工程勘察, 2006(5): 10-15. (CHA Fu-sheng, LIU Song-yu. Resistivity theory of soil and its applications[J]. Journal of Geotechnical Investigation & Surveying, 2006(5): 10-15. (in Chinese))
    [29]
    程志平. 电法勘探教程[M]. 北京: 冶金工业出版社, 2007. (CHEN Zhi-ping. Exploration using electrical method[M]. Beijing: Metallurgical Industry Press, 2007. (in Chinese))
  • Cited by

    Periodical cited type(13)

    1. 章青,刘攀勇,顾鑫,乔延赫. 土壤干缩开裂和卷曲分析的数值模型与若干进展Ⅰ:基本方程与网格类数值方法. 水利学报. 2025(01): 42-55 .
    2. 郭鸿,鲁玉妍,李文阳,邹虎金,张彤川,黄芙蓉. 生态纤维改良砂质黏土干缩裂隙试验研究. 水利水运工程学报. 2025(02): 121-127 .
    3. 孙海波,丁佳祺,邓云鹏,吕亚歌,高海彦. 黏土内部边界与含水率下限对干缩裂隙的影响. 科技通报. 2024(05): 65-72 .
    4. 邓云鹏,彭镝,董梅,徐日庆,傅榆涵. 考虑毛细与吸附作用的黏土干缩开裂过程离散元模拟. 岩土工程学报. 2024(08): 1703-1711 . 本站查看
    5. 冀文雅,李甜,徐向舟,李依杭,郭胜利. 基于稀土元素示踪技术的库岸崩滑土体堆积特征研究. 水资源与水工程学报. 2024(05): 164-171+180 .
    6. 章君政,唐朝生,巩学鹏,周启友,程青,吕超,施斌. 基于高密度电阻率法的土体干缩裂隙动态发育过程精细监测研究. 岩土力学. 2023(02): 392-402 .
    7. 牟文,唐朝生,程青,田本刚,刘伟杰,胡慧聪,施斌. 裂隙对土体水分蒸发过程的影响. 岩土工程学报. 2023(12): 2641-2648 . 本站查看
    8. 刘瑞琪,雷学文,万勇,刘磊. 含水率梯度作用下填埋场压实黏土层开裂特性试验与机理分析. 力学与实践. 2022(01): 12-21 .
    9. 岳建伟,李嘉乐,王思远,陈颖,邢旋旋,杨雪. 定远营遗址稳定性和微观劣化的研究. 科学技术与工程. 2021(10): 4159-4166 .
    10. 汪时机,骆赵刚,李贤,文桃. 考虑局部含水率效应的浅层土体开裂过程与力学机制分析. 岩土力学. 2021(05): 1395-1403 .
    11. 黎柳坤. 水库土石坝填土料冻融交替下UU试验力学特征影响分析研究. 水利科学与寒区工程. 2021(04): 50-55 .
    12. 王明俊,王朋,柯树炜. 基础沉降对钢型井架承载力及稳定性的影响规律研究. 城市住宅. 2021(09): 193-195+198 .
    13. 唐朝生. 极端气候工程地质:干旱灾害及对策研究进展. 科学通报. 2020(27): 3009-3027+3008 .

    Other cited types(12)

Catalog

    Article views PDF downloads Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return