Citation: | ZHANG Xianlei, YIN Chunjie, MA Zhongyang, GU Xiaoyu. Micropermeation mechanism of PVC-P geomembranes by low-field NMR technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 880-889. DOI: 10.11779/CJGE20221546 |
[1] |
束一鸣. 中国水库大坝土工膜防渗工程进展[J]. 水利水电科技进展, 2015, 35(5): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201505005.htm
SHU Yiming. Progress in geomembrane barriers for seepage prevention in reservoirs and dams in China[J]. Advances in Science and Technology of Water Resources, 2015, 35(5): 20-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201505005.htm
|
[2] |
CEN W J, WANG H, SUN Y J, et al. Monotonic and cyclic shear behaviour of geomembrane-sand interface[J]. Geosynthetics International, 2018, 25(4): 369-377. doi: 10.1680/jgein.18.00017
|
[3] |
TOUZE N. Healing the world: a geosynthetics solution[J]. Geosynthetics International, 2021, 28(1): 1-31.
|
[4] |
宁宇, 喻建清, 崔留杰. 软岩堆石高坝土工膜防渗技术[J]. 水力发电, 2016, 42(5): 62-67, 105. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201605020.htm
NING Yu, YU Jianqing, CUI Liujie. Anti-seepage of geomembrane for high soft rock filling dam[J]. Water Power, 2016, 42(5): 62-67, 105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201605020.htm
|
[5] |
KOERNER R M, WILKES J A. (2012). 2010 ICOLD bulletin on geomembrane sealing systems for dams[J]. Geosynthetics, 30(2): 34-36, 38, 40, 42-43.
|
[6] |
CAZZUFFI D, GIOFFRÈ D. Lifetime assessment of exposed PVC-P geomembranes installed on Italian dams[J]. Geotextiles and Geomembranes, 2020, 48(2): 130-136. doi: 10.1016/j.geotexmem.2019.11.015
|
[7] |
TOUZE-FOLTZ N, FARCAS F. Long-term performance and binder chemical structure evolution of elastomeric bituminous geomembranes[J]. Geotextiles and Geomembranes, 2017, 45(2): 121-130. doi: 10.1016/j.geotexmem.2017.01.003
|
[8] |
KOERNER R M, HSUAN Y G, KOERNER G R. Lifetime predictions of exposed geotextiles and geomembranes[J]. Geosynthetics International, 2017, 24(2): 198-212. doi: 10.1680/jgein.16.00026
|
[9] |
OZSU E, ACAR Y B. Liquid conduction tests for geomembranes[J]. Geotextiles and Geomembranes, 1992, 11(3): 291-318. doi: 10.1016/0266-1144(92)90005-U
|
[10] |
ELOY-GIORNI C, PELTE T, PIERSON P, et al. Water diffusion through geomembranes under hydraulic pressure[J]. Geosynthetics International, 1996, 3(6): 741-769. doi: 10.1680/gein.3.0083
|
[11] |
AMINABHAVI T M, NAIK H G. Chemical compatibility testing of geomembranes-sorption/desorption, diffusion, permeation and swelling phenomena[J]. Geotextiles and Geomembranes, 1998, 16(6): 333-354. doi: 10.1016/S0266-1144(98)00017-X
|
[12] |
LAMBERT S, TOUZE-FOLTZ N. A test for measuring permeability of geomembranes[C]// Proceedings Eurogeo, Bologna, 2000: 15-18.
|
[13] |
胡利文, 陈嘉鸥. 土工膜微结构破损机理分析[J]. 岩土力学, 2002, 23(6): 702-705. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200206008.htm
HU Liwen, CHEN Jiaou. Analysis of damage for microstructure of geomembrane[J]. Rock and Soil Mechanics, 2002, 23(6): 702-705. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200206008.htm
|
[14] |
张光伟, 张虎元, 杨博. 复合土工膜渗透性能试验研究[J]. 水文地质工程地质, 2011, 38(5): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201105013.htm
ZHANG Guangwei, ZHANG Huyuan, YANG Bo. Experimental investigation of the permeability of composite geomembrane[J]. Hydrogeology and Engineering Geology, 2011, 38(5): 58-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201105013.htm
|
[15] |
MARCONE M F, WANG S, ALBABISH W, et al. Diverse food-based applications of nuclear magnetic resonance (NMR) technology[J]. Food Research International, 2013, 51(2): 729-747. doi: 10.1016/j.foodres.2012.12.046
|
[16] |
CAI K, MARKLEY J L. NMR as a tool to investigate the processes of mitochondrial and cytosolic iron-sulfur cluster biosynthesis[J]. Molecules, 2018, 23(9): 23092213.
|
[17] |
L I Y, JIANG G, LI X, et al. Quantitative investigation of water sensitivity and water locking damages on a low- permeability reservoir using the core flooding experiment and NMR test[J]. ACS omega, 2022, 7(5): 4444-4456. doi: 10.1021/acsomega.1c06293
|
[18] |
ADAMS A, KWAMEN R, WOLDT B, et al. Nondestructive quantification of local plasticizer concentration in PVC by (1)H NMR relaxometry[J]. Macromol Rapid Commun, 2015, 36(24): 2171-2175. doi: 10.1002/marc.201500409
|
[19] |
DU Yong-qiang, ZHENG Jian, YU Gui-bo, 等. Transverse relaxation characteristic and stress relaxation model considering molecular chains of HTPB coating based on pre-strained thermal aging[J]. 防务技术, 2021, 17(3): 821-828. doi: 10.3969/j.issn.2214-9147.2021.03.013
DU Y Q, ZHENG J, YU G B, et al. Transverse relaxation characteristic and stress relaxation model considering molecular chains of HTPB coating based on pre-strained thermal aging[J]. Defence Technology, 2021, 17(3): 821-828. (in Chinese) doi: 10.3969/j.issn.2214-9147.2021.03.013
|
[20] |
WEI L, CHAI S, XUE M, et al. Structural damage and shear performance degradation of fiber-lime-soil under freeze-thaw cycling[J]. Geotextiles and Geomembranes, 2022, 50(5): 845-857. doi: 10.1016/j.geotexmem.2022.04.005
|
[21] |
姚俊辉, 陶明, 郭陈响. 微波加热对致密砂岩孔隙水的影响[J]. 中南大学学报(自然科学版), 2022, 53(6): 2176-2185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202206019.htm
YAO Junhui, TAO Ming, GUO Chenxiang. Effect of microwave heating on pore water in tight sandstone[J]. Journal of Central South University (Science and Technology), 2022, 53(6): 2176-2185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202206019.htm
|
[22] |
Standard Test Method for Measuring the Nominal Thickness of Geosynthetics: ASTM D5199-12[S]. West Conshohocken, PA, ASTM International, 2019.
|
[23] |
Standard Test Method for Measuring Mass per Unit Area of Geotextiles: ASTM D5261—10[S]. West Conshohocken, PA, ASTM International, 2018.
|
[24] |
Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes: ASTM D6693/D6693M-04[S]. West Conshohocken, PA, ASTM International, 2015.
|
[25] |
ZHANG P, LU S, LI J, et al. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR)[J]. Marine and Petroleum Geology, 2018, 89: 775-785. doi: 10.1016/j.marpetgeo.2017.11.015
|
1. |
吴敏,黄英豪,董仕骏,章荣军. 高分子絮凝剂对淤泥板框压滤脱水效果及影响机理. 岩土工程学报. 2025(03): 470-476 .
![]() | |
2. |
王瑞彩,吴腾. 改良垃圾焚烧底渣固化疏浚淤泥性能试验研究. 河海大学学报(自然科学版). 2024(01): 93-100 .
![]() | |
3. |
黄英豪,戴济群. 我国疏浚淤泥处置与利用研究进展. 中国水利. 2024(03): 25-28 .
![]() | |
4. |
王文翀,黄英豪,王硕,彭广益,王淮. 减水剂对流态固化淤泥流动性的影响试验研究. 岩土工程学报. 2024(08): 1605-1612 .
![]() | |
5. |
王硕,黄英豪,王文翀,王淮,彭广益. 新拌固化淤泥流动性测试标准试验研究. 水利水运工程学报. 2024(04): 89-100 .
![]() | |
6. |
朱军,黄英豪,王硕. 基于地铁工程低碳模型的资源化应用示范研究. 河南科学. 2024(10): 1477-1487 .
![]() | |
7. |
韩爽,谈云志,杨舒涵,明华军,吴军,王冲,肖宇. 膨胀珍珠岩调控固化淤泥物理-力学性能的方法. 岩土力学. 2024(11): 3324-3332 .
![]() | |
8. |
武亚军,张海强,占嘉城,骆嘉成. 取代真空联合堆载预压膜上砂保护垫层的流态固化土研究. 东北大学学报(自然科学版). 2024(10): 1494-1503 .
![]() | |
9. |
盛传明,马超,练继建,刘昉. 固废底泥水下应用抗分散性能研究. 水资源与水工程学报. 2023(01): 181-189 .
![]() | |
10. |
朱伟,王璐,钱勇进,方忠强,陆凯君,魏斌,孟立夫. 水下隧道中人工岛建设现状及主要问题. 河海大学学报(自然科学版). 2023(03): 72-83+120 .
![]() | |
11. |
何俊,吕晓龙,王文鹏. 碱渣-矿渣固化疏浚淤泥含水率控制方法研究. 人民长江. 2023(07): 196-202 .
![]() | |
12. |
王矿山,庞龙,戴振鑫,章晖,张新军. 湖底淤泥固化土的环境耐久性研究. 岩土工程技术. 2023(04): 455-460 .
![]() | |
13. |
郎瑞卿,裴璐熹,孙立强,周龙,李恒. 新拌不同液限淤泥固化土流动性试验研究. 岩土力学. 2023(10): 2789-2797 .
![]() | |
14. |
吴敏,黄英豪,尹洪斌,王硕,陈永,王文翀. 典型无机絮凝剂对疏浚淤泥絮凝效果及出水水质影响研究. 岩土工程学报. 2023(S1): 79-83 .
![]() | |
15. |
林泓民,商志阳,彭劼. 聚丙烯酰胺改善流态固化处理效果的试验研究. 河北工程大学学报(自然科学版). 2023(04): 67-73 .
![]() | |
16. |
张振海. 淤泥、淤泥质土地基的特征与处理研究——以浙江宁波某项目沉降的治理过程为例. 重庆建筑. 2022(05): 37-42 .
![]() | |
17. |
林泓民,白兰兰,彭劼,王成俊,李刚. 含泥量对砂质土流态固化处理效果的影响研究. 河北工程大学学报(自然科学版). 2022(03): 30-35 .
![]() | |
18. |
王强,李操,葛单单,王潇. 疏浚淤泥固化处理研究进展. 安徽建筑. 2022(12): 144-147 .
![]() | |
19. |
黄英豪,吴敏,陈永,王硕,王文翀,武亚军. 絮凝技术在疏浚淤泥脱水处治中的研究进展. 水道港口. 2022(06): 802-812 .
![]() |