• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Xianlei, YIN Chunjie, MA Zhongyang, GU Xiaoyu. Micropermeation mechanism of PVC-P geomembranes by low-field NMR technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 880-889. DOI: 10.11779/CJGE20221546
Citation: ZHANG Xianlei, YIN Chunjie, MA Zhongyang, GU Xiaoyu. Micropermeation mechanism of PVC-P geomembranes by low-field NMR technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 880-889. DOI: 10.11779/CJGE20221546

Micropermeation mechanism of PVC-P geomembranes by low-field NMR technology

More Information
  • Received Date: December 15, 2022
  • Available Online: June 01, 2023
  • The impermeability of PVC-P geomembranes is of significant importance to the safe operation of a project. To avoid the drawbacks of adopting the permeability coefficient to characterize permeability traditionally, a mathematical model for porosity and seepage discharge is proposed based on the results of the vertical permeability tests and the porosity obtained from the low-field NMR tests, and the applicability of porosity to evaluate the permeability is explored. The results show that the low-field NMR technology with 1H atoms as the probe can accurately measure the distribution of pores and pore radiis. The proportions of the micropores, mesopores and macropores and the shrinkage and development of the pore radii are primarily responsible for the variation of the porosity. The porosity is closely correlated with the seepage discharge, and the proposed model can accurately predict the seepage discharge. Furthermore, the porosity can evaluate the impermeability of PVC-P geomembranes.
  • [1]
    束一鸣. 中国水库大坝土工膜防渗工程进展[J]. 水利水电科技进展, 2015, 35(5): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201505005.htm

    SHU Yiming. Progress in geomembrane barriers for seepage prevention in reservoirs and dams in China[J]. Advances in Science and Technology of Water Resources, 2015, 35(5): 20-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201505005.htm
    [2]
    CEN W J, WANG H, SUN Y J, et al. Monotonic and cyclic shear behaviour of geomembrane-sand interface[J]. Geosynthetics International, 2018, 25(4): 369-377. doi: 10.1680/jgein.18.00017
    [3]
    TOUZE N. Healing the world: a geosynthetics solution[J]. Geosynthetics International, 2021, 28(1): 1-31.
    [4]
    宁宇, 喻建清, 崔留杰. 软岩堆石高坝土工膜防渗技术[J]. 水力发电, 2016, 42(5): 62-67, 105. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201605020.htm

    NING Yu, YU Jianqing, CUI Liujie. Anti-seepage of geomembrane for high soft rock filling dam[J]. Water Power, 2016, 42(5): 62-67, 105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201605020.htm
    [5]
    KOERNER R M, WILKES J A. (2012). 2010 ICOLD bulletin on geomembrane sealing systems for dams[J]. Geosynthetics, 30(2): 34-36, 38, 40, 42-43.
    [6]
    CAZZUFFI D, GIOFFRÈ D. Lifetime assessment of exposed PVC-P geomembranes installed on Italian dams[J]. Geotextiles and Geomembranes, 2020, 48(2): 130-136. doi: 10.1016/j.geotexmem.2019.11.015
    [7]
    TOUZE-FOLTZ N, FARCAS F. Long-term performance and binder chemical structure evolution of elastomeric bituminous geomembranes[J]. Geotextiles and Geomembranes, 2017, 45(2): 121-130. doi: 10.1016/j.geotexmem.2017.01.003
    [8]
    KOERNER R M, HSUAN Y G, KOERNER G R. Lifetime predictions of exposed geotextiles and geomembranes[J]. Geosynthetics International, 2017, 24(2): 198-212. doi: 10.1680/jgein.16.00026
    [9]
    OZSU E, ACAR Y B. Liquid conduction tests for geomembranes[J]. Geotextiles and Geomembranes, 1992, 11(3): 291-318. doi: 10.1016/0266-1144(92)90005-U
    [10]
    ELOY-GIORNI C, PELTE T, PIERSON P, et al. Water diffusion through geomembranes under hydraulic pressure[J]. Geosynthetics International, 1996, 3(6): 741-769. doi: 10.1680/gein.3.0083
    [11]
    AMINABHAVI T M, NAIK H G. Chemical compatibility testing of geomembranes-sorption/desorption, diffusion, permeation and swelling phenomena[J]. Geotextiles and Geomembranes, 1998, 16(6): 333-354. doi: 10.1016/S0266-1144(98)00017-X
    [12]
    LAMBERT S, TOUZE-FOLTZ N. A test for measuring permeability of geomembranes[C]// Proceedings Eurogeo, Bologna, 2000: 15-18.
    [13]
    胡利文, 陈嘉鸥. 土工膜微结构破损机理分析[J]. 岩土力学, 2002, 23(6): 702-705. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200206008.htm

    HU Liwen, CHEN Jiaou. Analysis of damage for microstructure of geomembrane[J]. Rock and Soil Mechanics, 2002, 23(6): 702-705. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200206008.htm
    [14]
    张光伟, 张虎元, 杨博. 复合土工膜渗透性能试验研究[J]. 水文地质工程地质, 2011, 38(5): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201105013.htm

    ZHANG Guangwei, ZHANG Huyuan, YANG Bo. Experimental investigation of the permeability of composite geomembrane[J]. Hydrogeology and Engineering Geology, 2011, 38(5): 58-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201105013.htm
    [15]
    MARCONE M F, WANG S, ALBABISH W, et al. Diverse food-based applications of nuclear magnetic resonance (NMR) technology[J]. Food Research International, 2013, 51(2): 729-747. doi: 10.1016/j.foodres.2012.12.046
    [16]
    CAI K, MARKLEY J L. NMR as a tool to investigate the processes of mitochondrial and cytosolic iron-sulfur cluster biosynthesis[J]. Molecules, 2018, 23(9): 23092213.
    [17]
    L I Y, JIANG G, LI X, et al. Quantitative investigation of water sensitivity and water locking damages on a low- permeability reservoir using the core flooding experiment and NMR test[J]. ACS omega, 2022, 7(5): 4444-4456. doi: 10.1021/acsomega.1c06293
    [18]
    ADAMS A, KWAMEN R, WOLDT B, et al. Nondestructive quantification of local plasticizer concentration in PVC by (1)H NMR relaxometry[J]. Macromol Rapid Commun, 2015, 36(24): 2171-2175. doi: 10.1002/marc.201500409
    [19]
    DU Yong-qiang, ZHENG Jian, YU Gui-bo, 等. Transverse relaxation characteristic and stress relaxation model considering molecular chains of HTPB coating based on pre-strained thermal aging[J]. 防务技术, 2021, 17(3): 821-828. doi: 10.3969/j.issn.2214-9147.2021.03.013

    DU Y Q, ZHENG J, YU G B, et al. Transverse relaxation characteristic and stress relaxation model considering molecular chains of HTPB coating based on pre-strained thermal aging[J]. Defence Technology, 2021, 17(3): 821-828. (in Chinese) doi: 10.3969/j.issn.2214-9147.2021.03.013
    [20]
    WEI L, CHAI S, XUE M, et al. Structural damage and shear performance degradation of fiber-lime-soil under freeze-thaw cycling[J]. Geotextiles and Geomembranes, 2022, 50(5): 845-857. doi: 10.1016/j.geotexmem.2022.04.005
    [21]
    姚俊辉, 陶明, 郭陈响. 微波加热对致密砂岩孔隙水的影响[J]. 中南大学学报(自然科学版), 2022, 53(6): 2176-2185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202206019.htm

    YAO Junhui, TAO Ming, GUO Chenxiang. Effect of microwave heating on pore water in tight sandstone[J]. Journal of Central South University (Science and Technology), 2022, 53(6): 2176-2185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202206019.htm
    [22]
    Standard Test Method for Measuring the Nominal Thickness of Geosynthetics: ASTM D5199-12[S]. West Conshohocken, PA, ASTM International, 2019.
    [23]
    Standard Test Method for Measuring Mass per Unit Area of Geotextiles: ASTM D5261—10[S]. West Conshohocken, PA, ASTM International, 2018.
    [24]
    Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes: ASTM D6693/D6693M-04[S]. West Conshohocken, PA, ASTM International, 2015.
    [25]
    ZHANG P, LU S, LI J, et al. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR)[J]. Marine and Petroleum Geology, 2018, 89: 775-785. doi: 10.1016/j.marpetgeo.2017.11.015
  • Cited by

    Periodical cited type(19)

    1. 吴敏,黄英豪,董仕骏,章荣军. 高分子絮凝剂对淤泥板框压滤脱水效果及影响机理. 岩土工程学报. 2025(03): 470-476 . 本站查看
    2. 王瑞彩,吴腾. 改良垃圾焚烧底渣固化疏浚淤泥性能试验研究. 河海大学学报(自然科学版). 2024(01): 93-100 .
    3. 黄英豪,戴济群. 我国疏浚淤泥处置与利用研究进展. 中国水利. 2024(03): 25-28 .
    4. 王文翀,黄英豪,王硕,彭广益,王淮. 减水剂对流态固化淤泥流动性的影响试验研究. 岩土工程学报. 2024(08): 1605-1612 . 本站查看
    5. 王硕,黄英豪,王文翀,王淮,彭广益. 新拌固化淤泥流动性测试标准试验研究. 水利水运工程学报. 2024(04): 89-100 .
    6. 朱军,黄英豪,王硕. 基于地铁工程低碳模型的资源化应用示范研究. 河南科学. 2024(10): 1477-1487 .
    7. 韩爽,谈云志,杨舒涵,明华军,吴军,王冲,肖宇. 膨胀珍珠岩调控固化淤泥物理-力学性能的方法. 岩土力学. 2024(11): 3324-3332 .
    8. 武亚军,张海强,占嘉城,骆嘉成. 取代真空联合堆载预压膜上砂保护垫层的流态固化土研究. 东北大学学报(自然科学版). 2024(10): 1494-1503 .
    9. 盛传明,马超,练继建,刘昉. 固废底泥水下应用抗分散性能研究. 水资源与水工程学报. 2023(01): 181-189 .
    10. 朱伟,王璐,钱勇进,方忠强,陆凯君,魏斌,孟立夫. 水下隧道中人工岛建设现状及主要问题. 河海大学学报(自然科学版). 2023(03): 72-83+120 .
    11. 何俊,吕晓龙,王文鹏. 碱渣-矿渣固化疏浚淤泥含水率控制方法研究. 人民长江. 2023(07): 196-202 .
    12. 王矿山,庞龙,戴振鑫,章晖,张新军. 湖底淤泥固化土的环境耐久性研究. 岩土工程技术. 2023(04): 455-460 .
    13. 郎瑞卿,裴璐熹,孙立强,周龙,李恒. 新拌不同液限淤泥固化土流动性试验研究. 岩土力学. 2023(10): 2789-2797 .
    14. 吴敏,黄英豪,尹洪斌,王硕,陈永,王文翀. 典型无机絮凝剂对疏浚淤泥絮凝效果及出水水质影响研究. 岩土工程学报. 2023(S1): 79-83 . 本站查看
    15. 林泓民,商志阳,彭劼. 聚丙烯酰胺改善流态固化处理效果的试验研究. 河北工程大学学报(自然科学版). 2023(04): 67-73 .
    16. 张振海. 淤泥、淤泥质土地基的特征与处理研究——以浙江宁波某项目沉降的治理过程为例. 重庆建筑. 2022(05): 37-42 .
    17. 林泓民,白兰兰,彭劼,王成俊,李刚. 含泥量对砂质土流态固化处理效果的影响研究. 河北工程大学学报(自然科学版). 2022(03): 30-35 .
    18. 王强,李操,葛单单,王潇. 疏浚淤泥固化处理研究进展. 安徽建筑. 2022(12): 144-147 .
    19. 黄英豪,吴敏,陈永,王硕,王文翀,武亚军. 絮凝技术在疏浚淤泥脱水处治中的研究进展. 水道港口. 2022(06): 802-812 .

    Other cited types(7)

Catalog

    Article views (319) PDF downloads (65) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return