• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Wenchong, HUANG Yinghao, WANG Shuo, PENG Guangyi, WANG Huai. Experimental study on influence of plasticizer on fluidity of convection- solidified silt[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1605-1612. DOI: 10.11779/CJGE20230828
Citation: WANG Wenchong, HUANG Yinghao, WANG Shuo, PENG Guangyi, WANG Huai. Experimental study on influence of plasticizer on fluidity of convection- solidified silt[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1605-1612. DOI: 10.11779/CJGE20230828

Experimental study on influence of plasticizer on fluidity of convection- solidified silt

More Information
  • Received Date: August 27, 2023
  • Available Online: December 19, 2023
  • Compared with the traditional backfill materials, the performance-controlled fluidized solidified (PCFS) backfill materials are characterized by high flow state and self-compaction, which can effectively avoid engineering problems caused by insufficient compaction, especially for backfill in narrow areas. Using silt as raw materials and cement as curing materials, the PCFS materials with controllable properties such as strength, fluidity and setting time are prepared. The influences of different initial conditions on the fluidity of the PCFS materials are discussed through the flow tests. In order to improve the flow performance of the PCFS materials, three water reducing agents, calcium lignosulfonate, naphthalene superplasticizer and polycarboxylate superplasticizer, are selected, and the effects of three water reducing agents on improving the flow of the PCFS materials are compared and analyzed. The results show that there is a positive linear correlation between the fluidity of the PCFS materials and the initial water content. The addition of cement will lead to a significant decrease in the fluidity of the PCFS materials, which mainly occurs when the cement content is less than 2%. The increasing range of fluidity of the PCFS materials by the three water-reducing agents is from large to small in the order of polycarboxylate superplasticizer > naphthalene superplasticizer > calcium lignosulfonate, wherein the incorporation of polycarboxylate superplasticizer and calcium lignosulfonate will introduce bubbles, and the "saturated content" of naphthalene superplasticizer and calcium lignosulfonate is 2% and 4%, respectively. Different cement contents will make the three kinds of water-reducing agent to improve the flow effects have a significant difference. The increase of cement content reduces the effects of the calcium lignosulfonate, has samll effects on the polycarboxylate superplasticizer, and shows " anomalous effects" on the naphthalene superplasticizer. Finally, the causes of "saturation content" and "anomalous effects" are discussed, and the expression formula for fluidity of the PCFS materials under the initial water content of 2wL and cement content of 5% is proposed.
  • [1]
    黄英豪, 戴济群, 徐锴. 新拌固化淤泥的流动性和黏滞性试验研究[J]. 岩土工程学报, 2022, 44(2): 235-244. doi: 10.11779/CJGE202202004

    HUANG Yinghao, DAI Jiqun, XU Kai. Experimental study on fluidity and viscosity of newly mixed solidified sludge[J]. Chinese Journal Geotechnical Engineering, 2022, 44(2): 235-244. (in Chinese) doi: 10.11779/CJGE202202004
    [2]
    黄英豪, 朱伟, 董婵, 等. 固化淤泥结构性力学特性的试验研究[J]. 水利学报, 2014, 45(增刊2): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2021.htm

    HUANG Yinghao, ZHU Wei, DONG Chan, et al. Experimental study on structural mechanical properties of solidified silt[J]. Journal of Hydraulic Engineering, 2014, 45(S2): 130-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2021.htm
    [3]
    黄英豪, 董婵, 关云飞, 等. 击实对固化淤泥物理力学性质的影响[J]. 岩土工程学报, 2012, 34(9): 1728-1733. http://cge.nhri.cn/cn/article/id/14703

    HUANG Yinghao, DONG Chan, GUAN Yunfei, et al. Effect of compaction on physical and mechanical properties of solidified silt[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1728-1733. (in Chinese) http://cge.nhri.cn/cn/article/id/14703
    [4]
    DEVARAJ V, MANGOTTIRI V, BALU S. Sustainable utilization of industrial wastes in controlled low-strength materials: a review[J]. Environmental Science and Pollution Research, 2023, 30(6): 14008-14028.
    [5]
    ALIZADEH V. Influence of cementing paste volume on properties of controlled low strength materials[J]. Journal of Materials in Civil Engineering, 2018, 30(3): 04017305. doi: 10.1061/(ASCE)MT.1943-5533.0002200
    [6]
    LING T C, KALIYAVARADHAN S K, POON C S. Global perspective on application of controlled low-strength material (CLSM) for trench backfilling: an overview[J]. Construction and Building Materials, 2018, 158: 535-548. doi: 10.1016/j.conbuildmat.2017.10.050
    [7]
    LACHEMI M, HOSSAIN K M A, SHEHATA M, et al. Controlled low strength materials incorporating cement kiln dust from various sources[J]. Cement and Concrete Composites, 2008, 30(5): 381-392. doi: 10.1016/j.cemconcomp.2007.12.002
    [8]
    LEE K H, KIM J D. Performance evaluation of modified marine dredged soil and recycled in-situ soil as controlled low strength materials for underground pipe[J]. KSCE Journal of Civil Engineering, 2013, 17(4): 674-680. doi: 10.1007/s12205-013-0178-3
    [9]
    MNEINA A, SOLIMAN A M, AHMED A, et al. Engineering properties of controlled low-strength materials containing treated oil sand waste[J]. Construction and Building Materials, 2018, 159: 277-285. doi: 10.1016/j.conbuildmat.2017.10.093
    [10]
    谭正日, 谭洪波, 吕周岭, 等. 不同类型减水剂对渣土基高流态回填材料性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3227-3233. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202209029.htm

    TAN Zhengri, TAN Hongbo, LÜ Zhouling, et al. Effect of plasticizer type on properties of construction spoil based high-fluid backfill materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3227-3233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202209029.htm
    [11]
    LEE K J, KIM S K, LEE K H. Flowable backfill materials from bottom ash for underground pipeline[J]. Materials, 2014, 7(5): 3337-3352. doi: 10.3390/ma7053337
    [12]
    KIM Y S, DO T M, KIM H K, et al. Utilization of excavated soil in coal ash-based controlled low strength material (CLSM)[J]. Construction and Building Materials, 2016, 124: 598-605. doi: 10.1016/j.conbuildmat.2016.07.053
    [13]
    HWANG C L, CHIANG C H, HUYNH T P, et al. Properties of alkali-activated controlled low-strength material produced with waste water treatment sludge, fly ash, and slag[J]. Construction and Building Materials, 2017, 135: 459-471. doi: 10.1016/j.conbuildmat.2017.01.014
    [14]
    丁建文, 刘铁平, 曹玉鹏, 等. 高含水率疏浚淤泥固化土的抗压试验与强度预测[J]. 岩土工程学报, 2013, 35(增刊2): 55-60. http://cge.nhri.cn/cn/article/id/15357

    DING Jianwen, LIU Tieping, CAO Yupeng, et al. Compressive test and strength prediction of soil solidified by dredged silt with high moisture content[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 55-60. (in Chinese) http://cge.nhri.cn/cn/article/id/15357
    [15]
    邱学青, 杨东杰, 吴湘伟, 等. 不同分子量木素磺酸钙减水剂的性能研究[J]. 混凝土与水泥制品, 1999(3): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW903.001.htm

    QIU Xueqing, YANG Dongjie, WU Xiangwei, et al. Study on properties of calcium sulfonate water reducing agents with different molecular weight[J]. Concrete and Cement Products, 1999(3): 7-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW903.001.htm
    [16]
    陈科, 杨长辉, 于泽东, 等. 不同减水剂及其复掺对碱矿渣水泥性能的影响[J]. 土木建筑与环境工程, 2012, 34(1): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201201024.htm

    CHEN Ke, YANG Changhui, YU Zedong, et al. Effects of different water reducing agents and their mixtures on properties of alkali slag cement[J]. Civil, Architecture and Environmental Engineering, 2012, 34(1): 124-129. (in Chinese) (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201201024.htm
    [17]
    胡红梅, 马保国, 何柳. 萘系高效减水剂的优化合成与改性[J]. 武汉理工大学学报, 2005(9): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200509012.htm

    HU Hongmei, MA Baoguo, HE Liu. Optimal synthesis and modification of naphthalene superplasticizers[J]. Journal of Wuhan University of Technology, 2005(9): 38-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200509012.htm
    [18]
    魏金, 丁向群, 沈洁, 等. 聚羧酸系高效减水剂的制备及其性能研究[J]. 硅酸盐通报, 2012, 31(1): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201201010.htm

    WEI Jin, DING Xiangqun, SHEN Jie, et al. Research on synthesis and properties of polycarboxylic superplasticizer[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(1): 42-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201201010.htm
    [19]
    JOLICOEUR C, SIMARD M A. Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts[J]. Cement and Concrete Composites, 1998, 20(2-3): 87-101. doi: 10.1016/S0958-9465(97)00062-0
    [20]
    刘经强, 冯竟竟, 李涛, 等. 混凝土外加剂实用技术手册[M]. 北京: 化学工业出版社, 2019.10: 45-46.

    LIU Jingqiang, FENG Jingjing, LI Tao, et al. Practical Technical Manual of Concrete Admixture[M]. Beijing: Chemical Industry Press, 2019.10: 45-46. (in Chinese)
    [21]
    马保国, 杨虎, 谭洪波, 等. 水泥和黏土矿物对不同减水剂的吸附特性[J]. 硅酸盐学报, 2013, 41(3): 328-333. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201303013.htm

    MA Baoguo, YANG Hu, TAN Hongbo, et al. Adsorption characteristics of different superplasticizers on cement and clay minerals[J]. Journal of the Chinese Ceramic Society, 2013, 41(3): 328-333. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201303013.htm

Catalog

    Article views (314) PDF downloads (67) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return