• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MO Jianhao, TANG Xinwei, YAN Zhenrui. Load bearing and deformation characteristics of single-layer segment lining structure for water conveyance tunnels[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1365-1373. DOI: 10.11779/CJGE20220526
Citation: MO Jianhao, TANG Xinwei, YAN Zhenrui. Load bearing and deformation characteristics of single-layer segment lining structure for water conveyance tunnels[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1365-1373. DOI: 10.11779/CJGE20220526

Load bearing and deformation characteristics of single-layer segment lining structure for water conveyance tunnels

More Information
  • Received Date: April 28, 2022
  • Available Online: February 23, 2023
  • The in-situ tests on the single-layer lining structure for water conveyance tunnels in South China are carried out, the mechanical response of the structure under the internal pressure in the surrounding rock is revealed, and the influences of different surrounding rock conditions on the load bearing and deformation characteristics of the single-layer segment lining structure are further studied by using a three-dimensional finite element model. The results show that under the internal pressure, the single-layer segment lining structure presents a "transverse ellipse" and expands outward, and the joint opening and bolt stress increase with the increase of the internal pressure. When the single-layer lining water conveyance tunnel is in class V surrounding rock, the convergence deformation of the linings and bolt stress should be combined to judge whether the structure reaches the normal service limit state. When it is in class IV surrounding rock, the bolt stress is the controlling factor for the structure to reach the normal service limit state. With the improvement of mechanical properties of the surrounding rock, the internal pressure-sharing effects of the surrounding rock are enhanced, which can improve the internal pressure bearing capacity of the structure. The difference of the internal and external pressures of the single-layer lining water conveyance tunnel in class V surrounding rock should not exceed 0.15 MPa, and that in class IV surrounding rock should not exceed 0.25 MPa.
  • [1]
    闫治国, 彭益成, 丁文其, 等. 青草沙水源地原水工程输水隧道单层衬砌管片接头荷载试验研究[J]. 岩土工程学报, 2011, 33(9): 1385-1390. http://www.cgejournal.com/cn/article/id/14179

    YAN Zhiguo, PENG Yicheng, DING Wenqi, et al. Load tests on segment joints of single lining structure of shield tunnel in Qingcaosha Water Conveyance Project[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1385-1390. (in Chinese) http://www.cgejournal.com/cn/article/id/14179
    [2]
    ZHANG Z X, LIU W, HUANG X, et al. Exploring the three-dimensional response of water storage and sewage tunnel based on 3D finite element modeling[J]. Tunnelling and Underground Space Technology, 2022, 120: 104269. doi: 10.1016/j.tust.2021.104269
    [3]
    官林星. 穿越赣江盾构法输水隧道的设计[J]. 隧道建设, 2013, 33(7): 579-585. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201307011.htm

    GUAN Linxing. Design of water- conveying shield tunnel crossing Ganjiang River[J]. Tunnel Construction, 2013, 33(7): 579-585. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201307011.htm
    [4]
    罗冬冬. 城市深隧排水盾构隧道管片接头力学行为研究[D]. 成都: 西南交通大学, 2019.

    LUO Dongdong. Study on Mechanical Behavior of Pipe Joint in Urban Deep Tunnel and Shield Tunnel[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [5]
    若林正憲, 橋本博英. PC Netセグメントの開発(その2)リング載荷試験について[C]// 土木学会年次学術演会講演概要集. 东京: 土木学会, 2003, 58(3): 905-906.

    WAKABAYASHI M, HASHIMOTO H. Development of PC Net segment (No. 2) ring loading test[C]// Proceedings of Annual Conference of the Japan Society of Civil Engineers. Tokyo: Japan Society of Civil Engineers, 2003, 58(3): 905-906. (in Japanese)
    [6]
    高橋直樹, 安田正樹. P & PCセグメントの止水性および内水圧への抵抗性について[C]// 土木学会年次学術演会講演概要集. 东京: 土木学会, 2000, 55(6): 70-71.

    TAKAHASHI N, YASUDA M. Study on water sealing and internal pressure bearing performance of P & PC segment[C]// Proceedings of Annual Conference of the Japan Society of Civil Engineers. Tokyo: Japan Society of Civil Engineers, 2000, 55(6): 70-71. (in Japanese)
    [7]
    CAO Y, WANG P Y, JIN X L, et al. Tunnel structure analysis using the multi-scale modeling method[J]. Tunnelling and Underground Space Technology, 2012, 28: 124-134. doi: 10.1016/j.tust.2011.10.004
    [8]
    ZHANG W J, WANG J H, JIN M M, et al. Numerical analysis of DRC segment under inner water pressure based on full-scale test verification for shield tunnel[J]. Tunnelling and Underground Space Technology, 2016, 56: 157-167. doi: 10.1016/j.tust.2016.03.010
    [9]
    CARPIO F, PEÑA F, GALVÁN A. Recommended deformation limits for the structural design of segmental tunnels built in soft soil[J]. Tunnelling and Underground Space Technology, 2019, 90: 264-276. doi: 10.1016/j.tust.2019.05.009
    [10]
    NEU G E, EDLER P, FREITAG S, et al. Reliability based optimization of steel-fibre segmental tunnel linings subjected to thrust jack loadings[J]. Engineering Structures, 2022, 254: 113752. doi: 10.1016/j.engstruct.2021.113752
    [11]
    LIU X, ZHANG Y M, BAO Y H, et al. Investigation of the structural effect induced by stagger joints in segmental tunnel linings: numerical explanation via macro-level structural modeling[J]. Tunnelling and Underground Space Technology, 2022, 120: 104284. doi: 10.1016/j.tust.2021.104284
    [12]
    章青, 卓家寿. 盾构式输水隧洞的计算模型及其工程应用[J]. 水利学报, 1999, 30(2): 19-22. doi: 10.3321/j.issn:0559-9350.1999.02.004

    ZHANG Qing, ZHUO Jiashou. A computational model of shield tunnel for water conveyance[J]. Journal of Hydraulic Engineering, 1999, 30(2): 19-22. (in Chinese) doi: 10.3321/j.issn:0559-9350.1999.02.004
    [13]
    赵大洲, 景来红, 杨维九. 南水北调西线工程深埋长隧洞管片衬砌结构受力分析[J]. 岩石力学与工程学报, 2005, 24(20): 3679-3684. doi: 10.3321/j.issn:1000-6915.2005.20.012

    ZHAO Dazhou, JING Laihong, YANG Weijiu. Numerical analysis of segment linings in deep and long tunnels of west route of south-to-north water transfer project[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(20): 3679-3684. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.20.012
    [14]
    佘成学, 张龙. 管片衬砌承担高内水压力的可行性分析[J]. 岩石力学与工程学报, 2008, 27(7): 1442-1447. doi: 10.3321/j.issn:1000-6915.2008.07.018

    SHE Chengxue, ZHANG Long. Feasibility analysis of prefabricated concrete segment lining in tunnel under high inner water pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1442-1447. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.07.018
    [15]
    周龙, 闫治国, 朱合华, 等. 深埋蓄排水盾构隧道衬砌结构力学性能试验及数值分析[J]. 现代隧道技术, 2018, 55(5): 174-187. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201805024.htm

    ZHOU Long, YAN Zhiguo, ZHU Hehua, et al. Experimental and numerical study on the behaviors of deep-buried water-storage and drainage shield tunnels[J]. Modern Tunnelling Technology, 2018, 55(5): 174-187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201805024.htm
    [16]
    刘威, 王祺, 庄欠伟, 等. 深埋排水调蓄盾构隧道管片1∶1力学试验系统的研发与应用[J]. 中国公路学报, 2020, 33(2): 103-113, 157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002010.htm

    LIU Wei, WANG Qi, ZHUANG Qianwei, et al. Development and application of a 1∶1 mechanical testing system for deeply-buried water storage and sewage shield tunnel[J]. China Journal of Highway and Transport, 2020, 33(2): 103-113, 157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002010.htm
    [17]
    盾构隧道工程设计标准: GB/T 51438—2021[S]. 北京: 中国建筑工业出版社, 2021.

    Standard for Design of Tunnel Engineering: GB/T 51438—2021[S]. Beijing: China Architecture & Building Press, 2021. (in Chinese
    [18]
    闫治国, 丁文其, 沈碧伟, 等. 输水盾构隧道管片接头力学与变形模型研究[J]. 岩土工程学报, 2011, 33(8): 1185-1191. http://www.cgejournal.com/cn/article/id/14149

    YAN Zhiguo, DING Wenqi, SHEN Biwei, et al. Structural model for radial joints of water-conveyance shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1185-1191. (in Chinese) http://www.cgejournal.com/cn/article/id/14149
    [19]
    水工隧洞设计规范: SL 279—2016[S]. 北京: 中国水利水电出版社, 2016.

    Specification for Design of Hydraulic Tunnel: SL 279—2016[S]. Beijing: China Water & Power Press, 2016. (in Chinese)
    [20]
    铁路隧道设计规范: TB 10003—2016[S]. 北京: 中国铁道出版社, 2017.

    Code for Design of Railway Tunnel: TB 10003—2016[S]. Beijing: China Railway Publishing House, 2017. (in Chinese)
  • Other Related Supplements

Catalog

    Article views (273) PDF downloads (75) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return