• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Yu, ZHANG Qing, WANG Yijie, CAI Guojun, DONG Xiaoqiang, DU Yanjun, JIANG Ningjun. Engineering properties and environmental safety of biostimulated MICP-treated lead-contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2352-2360. DOI: 10.11779/CJGE20230749
Citation: ZHANG Yu, ZHANG Qing, WANG Yijie, CAI Guojun, DONG Xiaoqiang, DU Yanjun, JIANG Ningjun. Engineering properties and environmental safety of biostimulated MICP-treated lead-contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2352-2360. DOI: 10.11779/CJGE20230749

Engineering properties and environmental safety of biostimulated MICP-treated lead-contaminated soil

More Information
  • Received Date: August 03, 2023
  • Available Online: January 09, 2024
  • With the acceleration of urbanization, the remediation, development and reuse of heavy metal-contaminated sites have attracted increasing attention. Taking the typical heavy metal contaminant lead as the research object, the effects of lead concentration on the bacterial activity indexes such as pH of soil, number of viable cell, concentration of urea and ammonium are investigated by using the biostimulated MICP method. The unconfined compressive strength, permeability and toxicity leaching concentration of the solidified lead-contaminated soil are used to evaluate the solidification effects. The findings demonstrate that the biostimulation method can realize the enrichment of ureolytic bacteria in low lead concentration contaminated soils. The number of viable cell can reach 109 CFU/g after 7 days of enrichment, but the high concentration of lead contaminants significantly inhibits the growth and activity of microorganisms. The strength and impermeability show an increasing trend with solidifying time, and the strength of 40 mM lead-contaminated soil increases significantly and the permeability coefficient can be decreased to 6.5×10-6 m/s after solidifying for 14 days. The leaching concentration also decreases with solidifying time, and the leaching concentration of the low lead concentration-contaminated soil solidified for 14 days can be lower than 0.1 mg/L in neutral or weakly acidic environment. Based on the engineering properties and environmental safety tests, the solidification mechanism of the lead-contaminated soil treated by the biostimulated MICP is revealed by combining the scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and microbial 16 s whole genome resequencing.
  • [1]
    JIANG N J, LIU R, DU Y J, et al. Microbial induced carbonate precipitation for immobilizing Pb contaminants: toxic effects on bacterial activity and immobilization efficiency[J]. The Science of the Total Environment, 2019, 672: 722-731. doi: 10.1016/j.scitotenv.2019.03.294
    [2]
    WU R R, YAO F T, LI X Y, et al. Manganese pollution and its remediation: a review of biological removal and promising combination strategies[J]. Microorganisms, 2022, 10(12): 2411. doi: 10.3390/microorganisms10122411
    [3]
    ZHANG Y, HU X L, WANG Y J, et al. A critical review of biomineralization in environmental geotechnics: applications, trends, and perspectives[J]. Biogeotechnics, 2023, 1: 100003. doi: 10.1016/j.bgtech.2023.100003
    [4]
    JIANG N J, WANG Y J, CHU J, et al. Bio-mediated soil improvement: an introspection into processes, materials, characterization and applications[J]. Soil Use and Management, 2022, 38(1): 68-93. doi: 10.1111/sum.12736
    [5]
    刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14.

    LIU Hanlong, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1-14. (in Chinese)
    [6]
    李驰, 田蕾, 董彩环, 等. MICP技术联合多孔硅吸附材料对锌铅复合污染土固化/稳定化修复的试验研究[J]. 岩土力学, 2022, 43(2): 307-316.

    LI Chi, TIAN Lei, DONG Caihuan, et al. Experimental study on zinc-lead composite contaminated soil solidified/stabilized by MICP technology combined with porous silicon adsorption materials[J]. Rock and Soil Mechanics, 2022, 43(2): 307-316. (in Chinese)
    [7]
    KANG C, KWON Y J, SO J. Bioremediation of heavy metals by using bacterial mixtures[J]. Ecological Engineering, 2016, 89: 64-69. doi: 10.1016/j.ecoleng.2016.01.023
    [8]
    SHARMA M, SATYAM N, REDDY K R, et al. Multiple heavy metal immobilization and strength improvement of contaminated soil using bio-mediated calcite precipitation technique[J]. Environmental Science and Pollution Research International, 2022, 29(34): 51827-51846. doi: 10.1007/s11356-022-19551-x
    [9]
    CHEN X, ACHAL V. Effect of simulated acid rain on the stability of calcium carbonate immobilized by microbial carbonate precipitation[J]. Journal of Environmental Management, 2020, 264: 110419. doi: 10.1016/j.jenvman.2020.110419
    [10]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [11]
    陈敏洁, 李亚飞, 李博文, 等. 微生物诱导碳酸钙沉淀对土壤中Pb污染稳定化的效果研究[J]. 有色金属工程, 2020, 10(12): 128-134. doi: 10.3969/j.issn.2095-1744.2020.12.018

    CHEN Minjie, LI Yafei, LI Bowen, et al. Effect of stabilization of Pb-pollution in soil based on microbial induced calcite precipitation[J]. Nonferrous Metals Engineering, 2020, 10(12): 128-134. (in Chinese) doi: 10.3969/j.issn.2095-1744.2020.12.018
    [12]
    YANG Z P, WANG Y, LI D H, et al. Influence of freeze-thaw cycles and binder dosage on the engineering properties of compound solidified/stabilized lead-contaminated soils[J]. International Journal of Environmental Research and Public Health, 2020, 17(3): 1077. doi: 10.3390/ijerph17031077
    [13]
    SADIGHI H, ROWSHANZAMIR M, BANITALEBI- DEHKORDI M. A multi-aspect application of microwave radiation on rehabilitating and improving the geotechnical properties of polluted-sand-clay mixture[J]. Journal of Contaminant Hydrology, 2022, 249: 104040. doi: 10.1016/j.jconhyd.2022.104040
    [14]
    陈蕾, 杜延军, 刘松玉, 等. 水泥固化铅污染土的基本应力-应变特性研究[J]. 岩土力学, 2011, 32(3): 715-721. doi: 10.3969/j.issn.1000-7598.2011.03.013

    CHEN Lei, DU Yanjun, LIU Songyu, et al. Experimental study of stress-strain properties of cement treated lead- contaminated soils[J]. Rock and Soil Mechanics, 2011, 32(3): 715-721. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.03.013
    [15]
    WANG Y J, JIANG N J, HAN X L, et al. Shear behavior of bio-cemented calcareous sand treated through bio-stimulation under the direct shear condition[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(10): 413. doi: 10.1007/s10064-022-02907-5
    [16]
    WANG Y J, JIANG N J, SARACHO A C, et al. Compressibility characteristics of bio-cemented calcareous sand treated through the bio-stimulation approach[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(2): 510-522. doi: 10.1016/j.jrmge.2022.05.007
    [17]
    WANG Y J, HAN X L, JIANG N J, et al. The effect of enrichment media on the stimulation of native ureolytic bacteria in calcareous sand[J]. International Journal of Environmental Science and Technology, 2020, 17(3): 1795-1808. doi: 10.1007/s13762-019-02541-x
    [18]
    FANG L Y, NIU Q J, CHENG L, et al. Ca-mediated alleviation of Cd2+ induced toxicity and improved Cd2+ biomineralization by Sporosarcina pasteurii[J]. Science of the Total Environment, 2021, 787: 147627. doi: 10.1016/j.scitotenv.2021.147627
    [19]
    American Society for Testing and Materials (ASTM). ASTM D4972-19 Standard test methods for pH of soils [S]. West Conshohocken: ASTM, 2019.
    [20]
    李元芳. 有效活菌数的测定方法、允许差与判定[J]. 土壤肥料, 1997(4): 43-44.

    LI Yuanfang. Determination method, allowable difference and judgment of effective viable bacteria number[J]. Soil and Fertilizer Sciences in China, 1997(4): 43-44. (in Chinese)
    [21]
    American Society for Testing and Materials (ASTM). ASTM D5084-16a Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter[S]. West Conshohocken: ASTM, 2016.
    [22]
    固体废物浸出毒性浸出方法水平振荡法: HJ 557—2010[S]. 北京: 中国环境科学出版社, 2010.

    Solid Waste-Extraction Procedure for Leaching Toxicity-Horizontal Vibration Method: HJ 557—2010[S]. Beijing: China Environmental Science Press, 2010. (in Chinese)
    [23]
    固体废物浸出毒性浸出方法醋酸缓冲溶液法: HJ/T 300—2007[S]. 北京: 中国环境科学出版社, 2007.

    Solid Waste-Extraction Procedure for Leaching Toxicity-Acetic Acid Buffer Solution Method: HJ/T 300—2007[S]. Beijing: China Environmental Science Press, 2007. (in Chinese)
    [24]
    固体废物浸出毒性浸出方法醋酸缓冲溶液法: HJ/T 300—2007[S]. 北京: 中国环境科学出版社, 2007.

    Solid Waste-Extraction Procedure for Leaching Toxicity-Acetic Acid Buffer Solution Method: HJ/T 300—2007[S]. Beijing: China Environmental Science Press, 2007. (in Chinese)
    [25]
    TANG C S, YIN L Y, JIANG N J, et al. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review[J]. Environmental Earth Sciences, 2020, 79(5): 94. doi: 10.1007/s12665-020-8840-9
    [26]
    KANG C H, OH S J, SHIN Y, et al. Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea[J]. Ecological Engineering, 2015, 74: 402-407. doi: 10.1016/j.ecoleng.2014.10.009
    [27]
    地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017.

    Standard for Groundwater Quality: GB/T 14848— 2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)
    [28]
    YUAN K, LEE S S, DE ANDRADE V, et al. Replacement of calcite (CaCO3) by cerussite (PbCO3)[J]. Environmental Science & Technology, 2016, 50(23): 12984-12991.
    [29]
    LI X X, WANG Y, TANG J J, et al. Removal behavior of heavy metals from aqueous solutions via microbially induced carbonate precipitation driven by acclimatized sporosarcina pasteurii[J]. Applied Sciences, 2022, 12(19): 9958. doi: 10.3390/app12199958
    [30]
    XIAO Y, HE X, ZAMAN M, et al. Review of strength improvements of biocemented soils[J]. International Journal of Geomechanics, 2022, 22(11): 03122001. doi: 10.1061/(ASCE)GM.1943-5622.0002565
    [31]
    董博文, 刘士雨, 俞缙, 等. 靶向激活产脲酶微生物加固钙质砂试验研究[J]. 岩土工程学报, 2021, 43(7): 1315-1321. doi: 10.11779/CJGE202107017

    DONG Bowen, LIU Shiyu, YU Jin, et al. Experimental study on reinforcement of calcareous sand by targeting activation of microbes producing urease[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1315-1321. (in Chinese) doi: 10.11779/CJGE202107017
  • Cited by

    Periodical cited type(44)

    1. 赵福堂,吴祁新,郑俊杰,郑烨炜. 基于广义剪应变的各向异性固结饱和砂土超静孔压发展模型. 岩土工程学报. 2025(02): 315-323 . 本站查看
    2. 王家全,和玉,林志南,唐毅. 考虑温度效应下海砂动力特性试验研究. 土木工程学报. 2025(02): 118-128 .
    3. 赵伟,史浩栋,范冠宇,宋毅,张建忙. 不同细粒含量砂土多次液化对其力学特性的影响. 河南科学. 2025(04): 576-585 .
    4. 郭舒洋,崔杰,吴杨,单毅,中田幸男,梶山慎太郎. 饱和珊瑚砂液化特性动三轴试验研究. 地震工程学报. 2024(01): 84-94 .
    5. Chen Guoxing,Qin You,Ma Weijia,Liang Ke,Wu Qi,C.Hsein Juang. Liquefaction susceptibility and deformation characteristics of saturated coral sandy soils subjected to cyclic loadings——a critical review. Earthquake Engineering and Engineering Vibration. 2024(01): 261-296 .
    6. 韩庆华,王永超,刘铭劼,李浩斌. 振动台试验饱和机制砂模型土动力特性研究. 土木工程学报. 2024(03): 110-122 .
    7. 金丹丹,施展,王炳辉,张雷. 冲击荷载下层状饱和无粘性土动孔压发展模式研究. 防灾减灾工程学报. 2024(02): 442-449 .
    8. 王家全,和玉,祝梦柯,钱弘毅. 相对密实度和固结应力比对北部湾海砂动力特性影响的试验研究. 安全与环境工程. 2024(04): 20-28 .
    9. 毛无卫,陈洁朋,潘龙. 珊瑚砂中桩贯入过程的声发射特征. 工程地质学报. 2024(05): 1872-1879 .
    10. 杨铮涛,王路阳,吴琪,周正龙,陈国兴. 细粒含量和相对密度对饱和珊瑚砂体应变发展特性影响试验. 工程科学与技术. 2024(06): 197-206 .
    11. 吴琪,吉东伟,肖兴,朱升冬,陈国兴. 海洋软黏土不排水循环强度的触变性试验研究. 岩土工程学报. 2024(12): 2513-2520 . 本站查看
    12. 王义德,汪云龙,刘荟达,张思宇,袁晓铭. 控制饱和度的珊瑚砂振动台液化模型试验研究. 地震工程与工程振动. 2024(06): 117-124 .
    13. 陈平山,吕卫清,梁小丛,周红星,王婧,马佳钧. 含细粒珊瑚土抗液化特性试验研究. 岩土力学. 2023(02): 337-344 .
    14. 李雪,王滢,高盟,陈青生,彭晓东. 地震荷载作用下南海非饱和钙质砂动力特性研究. 岩土力学. 2023(03): 821-833 .
    15. 郭竟语,汪新凯,马雅林,陈文龙. 孟加拉地区典型砂土抗液化特性动三轴试验研究. 路基工程. 2023(03): 62-67 .
    16. 秦悠,杨铮涛,吴琪,赵凯,陈国兴. 不同循环加载方式下饱和珊瑚砂的液化流动特性. 岩土工程学报. 2023(08): 1625-1634 . 本站查看
    17. 陈平山,梁小丛,王体强,王德咏,王永志,樊旭,陈卓识,袁晓铭. 珊瑚礁砂与标准砂场地液化特征动力离心试验研究. 岩石力学与工程学报. 2023(09): 2283-2294 .
    18. 李能,吴杨,周福霖,谭平. 岛礁吹填珊瑚砂不排水单调和循环剪切特性试验. 中国公路学报. 2023(08): 152-161 .
    19. 杨铮涛,秦悠,吴琪,陈国兴. 循环加载频率对饱和珊瑚砂液化特性的影响. 岩土力学. 2023(09): 2648-2656 .
    20. 吴琪,王路阳,刘启菲,周正龙,马维嘉,陈国兴. 基于剪切应变特征的饱和珊瑚砂超静孔压发展模型试验研究. 岩土工程学报. 2023(10): 2091-2099 . 本站查看
    21. 曹振中,史欢欢,秦志光,莫红艳,袁晓铭. 珊瑚礁砂地震液化评价与排水阈值条件研究. 地震工程与工程振动. 2023(05): 22-32 .
    22. 肖兴,吉东伟,杭天柱,吴琪,陈国兴. 海洋黏土孔压增长和刚度弱化的循环阈值剪应变试验研究. 岩土工程学报. 2023(S1): 123-127 . 本站查看
    23. 秦悠,马维嘉,吴琪,赵凯,陈国兴. 各向异性固结下饱和珊瑚砂的不排水循环反应特性. 土木工程学报. 2023(12): 177-186 .
    24. 梁小丛,陈平山,刘志军,王永志,朱明星. 离心机振动台模型试验验证的珊瑚礁砂液化判别方法研究. 岩土力学. 2023(11): 3173-3181+3212 .
    25. 张思懿,马林建,李洪亚,邓家军,李增. 软弱珊瑚砂地基加固研究进展. 防护工程. 2023(06): 71-78 .
    26. 刘志遐,郭成超,朱鸿鹄,曹鼎峰,黄锐,王复明,董璞. 珊瑚钙质砂导热系数与含水率关系的修正C?té-Konrad模型研究. 岩土工程学报. 2023(11): 2319-2326 . 本站查看
    27. 吴杨,崔杰,李晨,温丽维,单振东,廖静容. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究. 岩石力学与工程学报. 2022(01): 205-216 .
    28. 史金权,肖杨,刘汉龙,Wim Haegeman. 钙质砂小应变初始剪切模量试验研究. 岩土工程学报. 2022(02): 324-333 . 本站查看
    29. 马维嘉,秦悠,王常德,陈国兴. 复杂应力条件下饱和珊瑚砂各向异性试验研究. 岩土工程学报. 2022(03): 576-583 . 本站查看
    30. 刘志遐,郭成超,曹鼎峰,黄锐. 中国南海珊瑚钙质砂压缩特性. 科学技术与工程. 2022(06): 2401-2408 .
    31. 杨斌,林军. 饱和钙质砂孔压发展特性试验研究. 人民长江. 2022(06): 174-179 .
    32. 刘俊新,张建新,袁槐岑,张超,王光进. 高应力条件下双向激振时尾粉砂的动力特性. 工程科学与技术. 2022(04): 129-140 .
    33. 周洁,李泽垚,田万君,孙佳玮. 人工冻结对南京砂液化特性的影响. 中国铁道科学. 2021(02): 28-38 .
    34. 赵胜华,赵艳林,何江,曹振中,席方超. 颗粒级配对南沙珊瑚砂液化特性的影响. 中国科技论文. 2021(04): 402-407 .
    35. 高盟,彭晓东,陈青生. 南海非饱和钙质砂动力特性三轴试验研究. 北京工业大学学报. 2021(06): 625-635 .
    36. 刘抗,陈国兴,吴琪,马维嘉,秦悠. 循环加载方向对饱和珊瑚砂液化特性的影响. 岩土力学. 2021(07): 1951-1960 .
    37. ZHANG Yan-ling,DING Xuan-ming,CHEN Zhi-xiong,WU Qi,WANG Cheng-long. Seismic responses of slopes with different angles in coral sand. Journal of Mountain Science. 2021(09): 2475-2485 .
    38. 王鸾,汪云龙,袁晓铭,段志刚,刘荟达. 人工场地吹填珊瑚土抗液化强度大粒径动三轴试验研究. 岩土力学. 2021(10): 2819-2829 .
    39. 王蒙婷,郝宇杰,王吉. 相对密实度及激振频率对可液化场地动力响应特性影响数值模拟研究. 路基工程. 2021(05): 108-113 .
    40. 赵文燕,王桂萱,尹训强,赵杰. 南沙群岛永暑礁西南部珊瑚礁动力稳定性分析评价. 自然灾害学报. 2021(05): 181-189 .
    41. 许成顺,王冰,杜修力,岳冲,杨钰荣. 循环加载频率对砂土液化模式的影响试验研究. 土木工程学报. 2021(11): 109-118 .
    42. 刘俊新,袁槐岑,张超,张建新,刘育田,王光进. 高应力条件下循环球-偏应力耦合作用对饱和尾粉砂动力特性影响分析. 水利学报. 2021(11): 1295-1308 .
    43. 梁珂,何杨,陈国兴. 南沙珊瑚砂的动剪切模量和阻尼比特性试验研究. 岩土力学. 2020(01): 23-31+38 .
    44. 贾真,秦志光,曹振中. 钙质砂土原位试验对比与液化风险分析. 地震工程与工程振动. 2019(04): 178-183 .

    Other cited types(19)

Catalog

    Article views (431) PDF downloads (93) Cited by(63)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return