• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Fan-ge, HUANG Chang-fu, YAO Tie-jun, YANG Min. Experimental study on laws of compression and rebound deformation of peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 259-262. DOI: 10.11779/CJGE2021S2061
Citation: ZHANG Fan-ge, HUANG Chang-fu, YAO Tie-jun, YANG Min. Experimental study on laws of compression and rebound deformation of peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 259-262. DOI: 10.11779/CJGE2021S2061

Experimental study on laws of compression and rebound deformation of peaty soil

More Information
  • Received Date: August 14, 2021
  • Available Online: December 05, 2022
  • Based on the compression-rebound tests on peaty soil, the basic laws of compression and rebound deformation are studied. Analysis is focused on the range and change regularities of compressibility and resilience parameters of peaty soil. The test results show that the compression and swelling index of peaty soil are far greater than those of inorganic soft soil, and along with the increase of organic matter content, the values of both parameters increase significantly. The ratio of Cc/Ce is 5.66 in average. During the unloading-rebound process, when the unloading ratio is higher than 0.5, the rebound deformation increases obviously, and when higher than 0.9, it increases sharply. Moreover, it is shown that, with a rise of the unloading ratio, the rebound deformation ratio increases as a form of power function and the rebound modulus decreases linearly, in addition, the corresponding fitting relationships are established to estimate the resilience parameters of peaty soil.
  • [1]
    刘伟, 赵福玉, 杨文辉, 等. 安嵩线草海段泥炭质土的特征及性质[J]. 岩土工程学报, 2013, 35(增刊2): 671-674. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2121.htm

    LIU Wei, ZHAO Fu-yu, YANG Wen-hui, et al. Features and properties of peaty soil in Caohai section of Anning-Sonming line[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 671-674. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2121.htm
    [2]
    MESRI G, AJLOUNI M. Engineering properties of fibrous peats[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(7): 850-866. doi: 10.1061/(ASCE)1090-0241(2007)133:7(850)
    [3]
    桂跃, 余志华, 刘海明, 等. 高原湖相泥炭土次固结特性及机理分析[J]. 岩土工程学报, 2015, 37(8): 1390-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201508009.htm

    GUI Yue, YU Zhi-hua, LIU Hai-ming, et al. Secondary consolidation properties and mechanism of plateau lacustrine peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1390-1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201508009.htm
    [4]
    徐杨青, 顾凤鸣, 武继红. 环梁支撑结构在泥炭土深基坑中的应用研究[J]. 岩土工程学报, 2012, 34(增刊1): 319-323. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1065.htm

    XU Yang-qing, GU Feng-ming, WU Ji-hong. Application of circle beam supporting structure in deep excavation of peaty soft soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(S1): 319-323. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1065.htm
    [5]
    潘林有, 胡中雄. 深基坑卸荷回弹问题的研究[J]. 岩土工程学报, 2002, 24(1): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200201024.htm

    PAN Lin-you, HU Zhong-xiong. Experimental study on the resilience of pit under unloading[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 101-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200201024.htm
    [6]
    何平, 王卫东, 徐中华. 上海黏土压缩指数和回弹指数经验关系[J]. 岩土力学, 2018, 39(10): 3773-3782. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810035.htm

    HE Ping, WANG Wei-dong, XU Zhong-hua. Empirical correlations of compression index and swelling index for Shanghai clay[J]. Rock and Soil Mechanics, 2018, 39(10): 3773-3782. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810035.htm
    [7]
    ASTM D2974, Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils[S]. ASTM International, West Conshohocken, PA, 2014.
    [8]
    MESRI G, GODLEWSKI P M. Time and stress- compressibility interrelationship[J]. Journal of the Geotechnical Engineering Division, 1977, 103(5): 417-430.
    [9]
    李建民, 滕延京. 土样回弹及再压缩变形特征的试验研究[J]. 工程勘察, 2010, 38(12): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201012005.htm

    LI Jian-min, TENG Yan-jing. (Experimental study on the characteristics of the rebound and the recompression deformation of soil under unloading[J]. Geotechnical Investigation & Surveying, 2010, 38(12): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201012005.htm
    [10]
    余志华, 桂跃, 付坚, 等.轴向卸荷条件下泥炭质土回弹变形试验研究[J]. 水文地质工程地质, 2015, 42(5): 107-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201505019.htm

    YU Zhi-hua, GUI Yue, FU Jian, et al. An experimental study of the rebound deformation characteristics and mechanism of peaty soil under unloading[J]. Hydrogeology Engineering & Geology, 2015, 42(5): 107-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201505019.htm
    [11]
    王祥秋, 杨文涛, 刘文添. 珠三角地区典型软土卸荷力学特性研究[J]. 公路工程, 2014, 39(6): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201406016.htm

    WANG Xiang-qiu, YANG Wen-tao, LIU Wen-tian. Study on the unloading mechanical character of typical soft soil in the pearl river delta[J]. Highway Engineering, 2014, 39(6): 69-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201406016.htm
  • Related Articles

    [1]SUN Rui, ZHANG Jian, YANG Junsheng, YANG Feng. Axisymmetric adaptive lower bound finite element method based on Mohr-Coulomb yield criterion and second-order cone programming[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2387-2395. DOI: 10.11779/CJGE20220781
    [2]TAN Xu-kai, GAO Feng, XU Wei. Static instability criterion and safety factor of tunnels based on loading/unloading response ratio[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1644-1653. DOI: 10.11779/CJGE202209009
    [3]LIU Yang, FAN Meng, YAN Zhou-yi. DEM simulation of instability mode in sand under constant shear drained conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 467-475. DOI: 10.11779/CJGE202003008
    [4]YANG Xin-guang, CHI Shi-chun. Upper bound FEM analysis of slope stability using a nonlinear failure criterion[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1759-1764.
    [5]Instability criteria for high arch dams using catastrophe theory[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [6]Time and space prediction of collapse of loose wall rock at tunnel exit[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1868-1874.
    [7]LONG Xujian, HUANG Xiaoyan, ZHANG Chunyu, ZHOU Ji. Stiffness reduction and slope failure criterion in strength reduction finite element method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1910-1914.
    [8]LIU Enlong, SHEN Zhujiang. Strength criterion for structured soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1248-1252.
    [9]Su Zhimin, Jiang chunlei. A model of the strength criterion of shale[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(3): 55-58.
    [10]Pan Yishan, Zhang Mengtao, Li Guozhen. Analysis on Circular Chamber Rockburst by Dynamic Stability Criterion[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(5): 59-66.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return