• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Yang, FAN Meng, YAN Zhou-yi. DEM simulation of instability mode in sand under constant shear drained conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 467-475. DOI: 10.11779/CJGE202003008
Citation: LIU Yang, FAN Meng, YAN Zhou-yi. DEM simulation of instability mode in sand under constant shear drained conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 467-475. DOI: 10.11779/CJGE202003008

DEM simulation of instability mode in sand under constant shear drained conditions

More Information
  • Received Date: February 11, 2019
  • Available Online: December 07, 2022
  • Loose sandy soil can undergo static liquefaction under undrained conditions and the onset of instability is within the failure line, and this kind of instability is called diffusion instability. In recent years, some studies have shown that failure can occur under drained conditions. The constant shear drained (CSD) tests can be performed to investigate this drained instability. A key point of CSD tests is to control the error of deviating stress for getting reliable results in experiments. The discrete element method is used to simulate the CSD tests of sand with different densities under different shear stress levels. Based on the Hill's second-order work criterion, the possible model for instability in CSD tests are divided into two types. Both the modes of instability are observed in DEM simulations. The influences of initial void ratio and shear stress level are analyzed on instability under CSD loading path. The numerical results indicate that the samples with lager void ratio are easy to collapse, and the higher the shear stress level, the faster the instability occurs. The slope of instability line (IL) associated with the initial void ratio is also discussed in details, and a unified method is proposed to analyze sand instabilities under both drained and undrained stress paths. Finally, the numerical results from this study are compared with test ones of several kinds of sands.
  • [1]
    CASTRO G. Liquefaction of Sands[D]. Boston: Harvard University, 1969.
    [2]
    LADE P V, PRADEL D. Instability and plastic flow of soils: I experimental observations[J]. Journal of Engineering Mechanics, 1990, 116(11): 2532-2550. doi: 10.1061/(ASCE)0733-9399(1990)116:11(2532)
    [3]
    LANCELOT L, SHAHROUR I, MAHMOUD M A. Instability and static liquefaction on proportional strain paths for sand at low stresses[J]. Journal of Engineering Mechanics, 2004, 130(11): 1365-1372. doi: 10.1061/(ASCE)0733-9399(2004)130:11(1365)
    [4]
    LADE P V. Static instability and liquefaction of loose fine sandy slopes[J]. Journal of Geotechnical Engineering, 1992, 118(1): 51-71. doi: 10.1061/(ASCE)0733-9410(1992)118:1(51)
    [5]
    KRAFT L M, GAVIN T M, BRUTON J C. Submarine flow slide in Puget Sound[J]. Journal of Geotechnical Engineering, 1992, 118(10): 1577-1591. doi: 10.1061/(ASCE)0733-9410(1992)118:10(1577)
    [6]
    符新军, 赵仲辉. 饱和粉砂不稳定性的试验研究[J]. 岩土力学, 2008, 29(2): 381-385. doi: 10.3969/j.issn.1000-7598.2008.02.017

    FU Xin-jun, ZHAO Zhong-hui. Laboratory study of the instability of saturated silty sand[J]. Rock and Soil Mechanics, 2008, 29(2): 381-385. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.02.017
    [7]
    章根德, 韦昌富, 江礼茂. 饱和砂土的非稳定性[J]. 岩土工程学报, 1994, 16(6): 39-46. doi: 10.3321/j.issn:1000-4548.1994.06.005

    ZHANG Gen-de, WEI Chang-fu, JIANG Li-mao. The instability of saturated sand[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(6): 39-46. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.06.005
    [8]
    MRÓZ Z, BOUKPETI N, DRESCHER A. Constitutive model for static liquefaction[J]. International Journal of Geomechanics, 2003, 3(2): 133-144. doi: 10.1061/(ASCE)1532-3641(2003)3:2(133)
    [9]
    DESAI C S, PRADHAN S K, COHEN D. Cyclic Testing and constitutive modeling of saturated sand-concrete interfaces using the disturbed state concept[J]. International Journal of Geomechanics, 2005, 5(4): 286-294. doi: 10.1061/(ASCE)1532-3641(2005)5:4(286)
    [10]
    RAHMAN M M, BAKI M A L, LO S R. Prediction of undrained monotonic and cyclic liquefaction behavior of sand with fines based on the equivalent granular state parameter[J]. International Journal of Geomechanics, 2014, 14(2): 254-266. doi: 10.1061/(ASCE)GM.1943-5622.0000316
    [11]
    马刚, 常晓林, 刘嘉英, 等. 颗粒物质在等比例应变加载下的分散性失稳模式[J]. 岩土力学, 2015, 36(增刊1): 181-186. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1030.htm

    MA Gang, CHANG Xiao-lin, LIU Jia-ying, et al. Diffusion failure mode of granular materials under proportional strain path loading[J]. Rock and Soil Mechanics, 2015, 36(S1): 181-186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1030.htm
    [12]
    CHU J, LO S R, LEE I K. Instability of granular soils under strain path testing[J]. Journal of Geotechnical Engineering, 1993, 119(5): 874-892. doi: 10.1061/(ASCE)0733-9410(1993)119:5(874)
    [13]
    LANCELOT L, SHAHROUR I, MAHMOUD M A. Instability and static liquefaction on proportional strain paths for sand at low stresses[J]. Journal of Engineering Mechanics, 2004, 130(11): 1365-1372. doi: 10.1061/(ASCE)0733-9399(2004)130:11(1365)
    [14]
    JRAD M, SUKUMARAN B, DAOUADJI A. Experimental analyses of the behaviour of saturated granular materials during axisymmetric proportional strain paths[J]. European Journal of Environmental and Civil Engineering, 2012, 16(1): 111-120. doi: 10.1080/19648189.2012.666900
    [15]
    ECKERSLEY J D. Instrumented laboratory flow slides[J]. Géotechnique, 1990, 40(3): 489-502. doi: 10.1680/geot.1990.40.3.489
    [16]
    OLSON S M, STARK T D, WALTON W H. 1907 Static liquefaction flow failure of the north dike of Wachusett dam[J]. Journal of Geotechnical and Geo-environmental Engineering, 2000, 126(12): 1184-1193. doi: 10.1061/(ASCE)1090-0241(2000)126:12(1184)
    [17]
    HILL R. A general theory of uniqueness and stability in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1958, 6(3): 236-249. doi: 10.1016/0022-5096(58)90029-2
    [18]
    SASITHARAN S, ROBERTSON P K, SEGO D C, et al. Collapse behavior of sand[J]. Canadian Geotechnical Journal, 1993, 30(4): 569-577. doi: 10.1139/t93-049
    [19]
    SKOPEK P, MORGENSTERN N R, ROBERTSON P, et al. Collapse of dry sand[J]. Canadian Geotechnical Journal, 1994, 31(6): 1008-1014. doi: 10.1139/t94-115
    [20]
    ANDERSON S A, RIEMER M F. Collapse of saturated soil due to reduction in confinement[J]. Journal of Geotechnical Engineering, 1995, 121(2): 216-220. doi: 10.1061/(ASCE)0733-9410(1995)121:2(216)
    [21]
    CHU J, S L , LEONG W K. Unstable behavior of sand and its implication for slope instability[J]. Canadian Geotechnical Journal, 2003, 40(5): 873-885. doi: 10.1139/t03-039
    [22]
    LADE P V, PRADEL D. Instability and plastic flow of soils I: experimental observations[J]. Journal of Engineering Mechanics, 1990, 116(11): 2532-2550. doi: 10.1061/(ASCE)0733-9399(1990)116:11(2532)
    [23]
    LEONG W K, CHU J, TEH C I. Liquefaction and instability of a granular fill material[J]. Geotechnical Testing Journal, 2000, 23(2): 178-192. doi: 10.1520/GTJ11042J
    [24]
    MONKUL M M, YAMAMURO J A, LADE P V. Failure, instability, and the second work increment in loose silty sand[J]. Canadian Geotechnical Journal, 2011, 48(6): 943-955. doi: 10.1139/t11-013
    [25]
    CHU J, LEONG W K, LOKE W L, et al. Instability of loose sand under drained conditions[J]. Journal of Geotechnical & Geo-environmental Engineering, 2012, 138(2): 207-216.
    [26]
    DONG Q, XU C, CAI Y, et al. Drained instability in loose granular material[J]. International Journal of Geomechanics, 2015, 16(2): 04015043.
    [27]
    董全杨, 蔡袁强, 王军, 等. 松散砂土不稳定性试验研究[J]. 岩石力学与工程学报, 2014(3): 623-630. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201403024.htm

    DONG Quan-yang, CAI Yuan-qiang, WANG Jun, et al. Experimental study of instability of loose sand[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014(3): 623-630. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201403024.htm
    [28]
    DAOUADJI A, ALGALI H, DARVE F, et al. Instability in granular materials: experimental evidence of diffuse mode of failure for loose sands[J]. Journal of Engineering Mechanics, 2010, 136(5): 575-588. doi: 10.1061/(ASCE)EM.1943-7889.0000101
    [29]
    DAOUADJI A, HICHER P Y, JRAD M, et al. Experimental and numerical investigation of diffuse instability in granular materials using a microstructural model under various loading paths[J]. Géotechnique, 2013, 63(5): 368-381. doi: 10.1680/geot.10.P.121
    [30]
    DARVE F, LAOUAFA F, SERVANT G, et al. Continuous and discrete analyses of failure in geomaterials[J]. Computer Methods in Applied Mechanics & Engineering, 2004, 193(27): 3057-3085.
    [31]
    DARVE F, SIBILLE L, DAOUADJI A, et al. Bifurcations in granular media: macro and micro-mechanics approaches[J]. Comptes Rendus Mécanique, 2007, 335(9/10): 496-515.
    [32]
    ORENSE R, FAROOQ K, TOWHATA I. Deformation behavior of sandy slopes during rainwater infiltration[J]. Soils and Foundations, 2004, 44(2): 15-30. doi: 10.3208/sandf.44.2_15
    [33]
    WANATOWSKI D, CHU J, LOKE W L. Drained instability of sand in plane strain[J]. Canadian Geotechnical Journal, 2010, 47(4): 400-412. doi: 10.1139/T09-111
    [34]
    CHU J, WANATOWSKI D, LEONG W K, et al. Instability of dilative sand[J]. Geotechnical Research, 2015, 2(1): 35-48.
    [35]
    FAN M, LIU Y, HAN J, et al. Numerical investigation of diffuse instability in sandy soil using discrete element method under proportional strain path loading[J]. Latin American Journal of Solids and Structures, 2018, 15(11): e134.
    [36]
    FEIA S, SULEM J, CANOU J, et al. Changes in permeability of sand during triaxial loading: effect of fine particles production[J]. Acta Geotech, 2016, 11(1): 1-19.
  • Cited by

    Periodical cited type(9)

    1. 杨光. 波浪补偿钻探设备在海洋岩土工程勘察中的应用. 价值工程. 2024(12): 111-113 .
    2. 杨文保,朱恩赐,吴琪,陈国兴,卢艺静,蒋家卫. 基于BP神经网络的原状土阻尼比智能预测法. 哈尔滨工程大学学报. 2024(08): 1527-1533 .
    3. 郭婷婷,刘建民,杨宏智. 土动剪切模量比的不确定性对莱州湾近海海域深软场地地震动参数的影响. 地球物理学进展. 2023(04): 1765-1774 .
    4. 陈国兴,韩勇,梁珂. 徐州城区黏性土与粉土的动剪切模量与阻尼比特性. 岩土力学. 2023(S1): 163-172 .
    5. 宋丙辉,孙永福,宋玉鹏,周其坤,刘振纹,王琮,杜星. 辽东湾近海海底土小应变动力特性试验研究. 地震工程学报. 2022(03): 535-541 .
    6. 蔡玮良. 江苏大丰海域海洋黏性土动力特性试验研究. 地基处理. 2022(04): 303-308 .
    7. 王艳芳,顾伟杰,姜彦彬. 土体动剪切模量及其衰减特性现场试验研究. 世界地震工程. 2022(03): 144-152 .
    8. 周正龙,丁芷萱,刘杰,赵凯,梁珂,鹿庆蕊. 南海海域饱和粉土动剪切模量和阻尼比试验研究. 土木工程学报. 2022(S1): 227-233 .
    9. 李雨润,杨仲辰,张静娟,张峰玮,赵英涛. 重塑湖相软黏土动力特性试验研究. 地震工程与工程振动. 2021(06): 11-18 .

    Other cited types(5)

Catalog

    Article views (313) PDF downloads (251) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return