Citation: | LI Bo, YE Peng-jin, HUANG Lin, WANG Ding, ZHAO Cheng, ZOU Liang-chao. Deformation and acoustic emission characteristics of dry and saturated rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2249-2257. DOI: 10.11779/CJGE202112011 |
[1] |
ERGULER Z A, ULUSAY R. Water-induced variations in mechanical properties of clay-bearing rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 355-370. doi: 10.1016/j.ijrmms.2008.07.002
|
[2] |
RAJABZADEH M A, MOOSAVINASAB Z, RAKHSHANDEHROO G. Effects of rock classes and porosity on the relation between uniaxial compressive strength and some rock properties for carbonate rocks[J]. Rock Mechanics and Rock Engineering, 2012, 45(1): 113-122. doi: 10.1007/s00603-011-0169-y
|
[3] |
WONG L N Y, MARUVANCHERY V, LIU G. Water effects on rock strength and stiffness degradation[J]. Acta Geotechnica, 2016, 11(4): 713-737. doi: 10.1007/s11440-015-0407-7
|
[4] |
BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20(6): 249-268.
|
[5] |
PEI L, HYUN S, MOLINARI J F, et al. Finite element modeling of elasto-plastic contact between rough surfaces[J]. Journal of the Mechanics & Physics of Solids, 2005, 53(11): 2385-2409.
|
[6] |
LAVROV A. Fracture permeability under normal stress: a fully computational approach[J]. Journal of Petroleum Exploration and Production Technology, 2017, 7(1): 181-194. doi: 10.1007/s13202-016-0254-6
|
[7] |
TIAN X F, BHUSHAN B. A numerical three-dimensional model for the contact of rough surfaces by variational principle[J]. Journal of Tribology, 1996, 118(1): 33-42. doi: 10.1115/1.2837089
|
[8] |
HOPKINS D L. The Effect of Surface Roughness on Joint Stiffness, Aperture, and Acoustic Wave Propagation[D]. Berkeley: University of California, 1991.
|
[9] |
LI B, ZHAO Z H, JIANG Y J, et al. Contact mechanism of a rock fracture subjected to normal loading and its impact on fast closure behavior during initial stage of fluid flow experiment[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(13): 1431-1449. doi: 10.1002/nag.2365
|
[10] |
GREENWOOD J A, WILLIAMSON J B P P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London, 1966, 295(1442): 300-319.
|
[11] |
KLING T, VOGLER D, PASTEWKA L, et al. Numerical simulations and validation of contact mechanics in a granodiorite fracture[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2805-2824. doi: 10.1007/s00603-018-1498-x
|
[12] |
ZOU L C, LI B, MO Y Y, et al. A high-resolution contact analysis of rough-walled crystalline rock fractures subject to normal stress[J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2141-2155. doi: 10.1007/s00603-019-02034-w
|
[13] |
RUDAJEV V, VILHELM J, LOKAJÍČEK T. Laboratory studies of acoustic emission prior to uniaxial compressive rock failure[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 699-704. doi: 10.1016/S1365-1609(99)00126-4
|
[14] |
陈国庆, 陈毅, 孙祥, 等. 开放型岩桥裂纹贯通机理及脆性破坏特征研究[J]. 岩土工程学报, 2020, 42(5): 908-915. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005018.htm
CHEN Guo-qing, CHEN Yi, SUN Xiang, et al. Crack coalescence and brittle failure characteristics of open rock bridges[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 908-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005018.htm
|
[15] |
LIU S M, LI X L, WANG D K, et al. Mechanical and acoustic emission characteristics of coal at temperature impact[J]. Natural Resources Research, 2019, 29(4): 1755-17772.
|
[16] |
龚囱, 李长洪, 赵奎. 红砂岩短时蠕变声发射b值特征[J]. 煤炭学报, 2015, 40(增刊1): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2015S1013.htm
GONG Cong, LI Chang-hong, ZHAO Kui. Study on b-value characteristics of acoustic emission of red sandstone during short-time creep process[J]. Journal of China Coal Society, 2015, 40(S1): 85-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2015S1013.htm
|
[17] |
王春来, 廖泽锋, 李长峰, 等. 花岗岩岩爆声发射时空熵值动态特征实验研究[J]. 采矿与安全工程学报, 2019, 36(3): 626-633. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201903027.htm
WANG Chun-lai, LIAO Ze-feng, LI Chang-feng, et al. Experimental investigation of dynamic characteristics of AE spatio-temporal entropy for granitic rockburst[J]. Journal of Mining & Safety Engineering, 2019, 36(3): 626-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201903027.htm
|
[18] |
LI L R, DENG J H, ZHENG L, et al. Dominant frequency characteristics of acoustic emissions in white marble during direct tensile tests[J]. Rock Mechanics and Rock Engineering, 2017, 50(5): 1337-1346. doi: 10.1007/s00603-016-1162-2
|
[19] |
赵兴东, 李元辉, 袁瑞甫, 等. 基于声发射定位的岩石裂纹动态演化过程研究[J]. 岩石力学与工程学报, 2007, 26(5): 944-950. doi: 10.3321/j.issn:1000-6915.2007.05.011
ZHAO Xing-dong, LI Yuan-hui, YUAN Rui-pu, et al. Study on crack dynamic propagation process of rock samples based on acoustic emission location[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 944-950. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.05.011
|
[20] |
刘建坡, 徐世达, 李元辉, 等. 预制孔岩石破坏过程中的声发射时空演化特征研究[J]. 岩石力学与工程学报, 2012, 31(12): 2538-2547. doi: 10.3969/j.issn.1000-6915.2012.12.018
LIU Jian-po, XU Shi-da, LI Yuan-hui, et al. Studies of AE time-space evolution characteristics during failure process of rock specimens with prefabricated holes[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2538-2547. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.12.018
|
[21] |
DONG L J, HU Q C, TONG X J, et al. Velocity-free MS/AE source location method for three-dimensional hole-containing structures[J]. Engineering, 2020, 6(7): 827-834. doi: 10.1016/j.eng.2019.12.016
|
[22] |
GEIGER L. Probability method for determination of earthquake epicenters form arrival time only[J]. Bulletin of Saint Louis University, 1912, 8: 60-71.
|
[23] |
赵兴东, 刘建坡, 李元辉, 等. 岩石声发射定位技术及其实验验证[J]. 岩土工程学报, 2008, 30(10): 1472-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200810012.htm
ZHAO Xing-dong, LIU Jian-po, LI Yuan-hui, et al. Experimental verification of rock locating technique with acoustic emission[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1472-1476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200810012.htm
|
[24] |
BOUSSINESQ J. Application des potentiels: à l'étude de l'équilibre et du mouvement des solides élastiques[J]. Gauthier-Villard, Paris, 1885.
|
[25] |
MOMBER A W. Fracture toughness effects in geomaterial solid particle erosion[J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1573-1588.
|
[26] |
PRADHAN P S, KING R L, YOUNAN N H, et al. Estimation of the number of decomposition levels for a wavelet-based multiresolution multisensor image fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3674-3686.
|
[27] |
BROWN S R, SCHOLZ C H. Closure of rock joints[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4939-4948.
|
[28] |
王笑然, 李楠, 王恩元, 等. 岩石裂纹扩展微观机制声发射定量反演[J]. 地球物理学报, 2020, 63(7): 2627-2643. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202007013.htm
WANG Xiao-ran, LI Nan, WANG En-yuan, et al. Microcracking mechanisms of sandstone from acoustic emission source inversion[J]. Chinese Journal of Geophysics, 2020, 63(7): 2627-2643. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202007013.htm
|
[29] |
YAO Q L, CHEN T, JU M H, et al. Effects of water intrusion on mechanical properties of and crack propagation in coal[J]. Rock Mechanics and Rock Engineering, 2016, 49(12): 4699-4709.
|
1. |
介玉新. Rowe剪胀方程及一种新的推导方法. 水力发电学报. 2024(01): 109-123 .
![]() | |
2. |
李昌厚. 原状土强度与压缩特性试验研究. 科技资讯. 2024(21): 162-165 .
![]() | |
3. |
陈榕,武智勇,郝冬雪,高宇聪. 高应力下石英砂三轴剪切颗粒破碎演化规律及影响. 岩土工程学报. 2023(08): 1713-1722 .
![]() | |
4. |
王博,吕果,李江. 考虑粒径对砂土宏细观剪切性质的试验研究. 岩土工程技术. 2023(05): 618-622 .
![]() | |
5. |
高宇新,朱鸿鹄,张春新,刘威,王静,张巍. 砂土中锚板上拔三维物质点法模拟研究. 岩土工程学报. 2022(02): 295-304 .
![]() | |
6. |
刘先峰,马杰,袁胜洋,陈康,潘申鑫,郑立宁,胡熠. 干密度和含水率对压实红层泥岩路基填料强度特性的影响研究. 铁道科学与工程学报. 2022(10): 2910-2918 .
![]() | |
7. |
陈榕,孙鹤,郝冬雪,武智勇,高宇聪. 单粒组冻结砂土三轴压缩颗粒破碎规律研究. 岩土工程学报. 2022(S1): 92-97 .
![]() | |
8. |
于满满,杜佼蕾. 应用于强冻胀土的光伏支架基础方案分析. 太阳能. 2021(10): 52-58 .
![]() |