Citation: | GAO Yu-xin, ZHU Hong-hu, ZHANG Chun-xin, LIU Wei, WANG Jing, ZHANG Wei. Three-dimensional uplift simulation of anchor plates in sand using material point method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 295-304. DOI: 10.11779/CJGE202202011 |
[1] |
ADAMS J I, HAYES D C. The uplift capacity of shallow foundations[J]. Ontario Hydro Research Quarterly, 1967, 19: 1.
|
[2] |
ILAMPARUTHI K, DICKIN E A, MUTHUKRISNAIAH K. Experimental investigation of the uplift behaviour of circular plate anchors embedded in sand[J]. Canadian Geotechnical Journal, 2002, 39(3): 648–664. doi: 10.1139/t02-005
|
[3] |
胡伟, 刘顺凯, 邹贵华, 等. 竖向条形锚定板水平拉拔极限承载力统一理论解研究[J]. 岩土工程学报, 2018, 40(2): 296–304. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802012.htm
HU Wei, LIU Shun-kai, ZOU Gui-hua, et al. Unified theoretical solution for ultimate bearing capacity of vertical strip anchor[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 296–304. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802012.htm
|
[4] |
黄茂松, 余生兵. 基于块体集上限法的砂土中条形锚板抗拔承载力分析[J]. 岩土工程学报, 2013, 35(2): 201–207. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302003.htm
HUANG Mao-song, YU Sheng-bing. Pull-out capacity of strip anchor plate in sand based on block set mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 201–207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302003.htm
|
[5] |
郝冬雪, 符胜男, 陈榕, 等. 砂土中锚板拉拔模型试验及其抗拔力计算[J]. 岩土工程学报, 2015, 37(11): 2101–2106. doi: 10.11779/CJGE201511023
HAO Dong-xue, FU Sheng-nan, CHEN Rong, et al. Experimental investigation of uplift behavior of anchors and estimation of uplift capacity in sands[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2101–2106. (in Chinese) doi: 10.11779/CJGE201511023
|
[6] |
SAKAI T, TANAKA T. Experimental and numerical study of uplift behavior of shallow circular anchor in two-layered sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(4): 469–477. doi: 10.1061/(ASCE)1090-0241(2007)133:4(469)
|
[7] |
PÉREZ Z A, SCHIAVON J A, DE HOLLANDA CAVALCANTI TSUHA C, et al. Numerical and experimental study on influence of installation effects on behaviour of helical anchors in very dense sand[J]. Canadian Geotechnical Journal, 2018, 55(8): 1067–1080. doi: 10.1139/cgj-2017-0137
|
[8] |
KANITZ M, HAGER A, GRABE J, et al. Numerical and experimental analysis of the extraction mechanism of an anchor plate embedded in saturated sand[J]. Computers and Geotechnics, 2019, 111: 191–201. doi: 10.1016/j.compgeo.2019.03.014
|
[9] |
EVANS T M, ZHANG N. Three-dimensional simulations of plate anchor pullout in granular materials[J]. International Journal of Geomechanics, ASCE, 2019, 19(4): 04019004. doi: 10.1061/(ASCE)GM.1943-5622.0001367
|
[10] |
LIANG W J, ZHAO J D, SOGA K. Multiscale modeling of anchor pull-out in sand[M]//Challenges and Innovations in Geomechanics. Cham: Springer International Publishing, 2021: 787–793.
|
[11] |
ZHANG X, CHEN Z, LIU Y. The material point method[M]// The Material Point Method. Amsterdam: Elsevier, 2017: 37–101.
|
[12] |
FERN J, ROHE A, SOGA K, et al. The material point method for geotechnical engineering: a practical guide[M]// The Material Point Method for Geotechnical Engineering. Boca Raton: CRC Press, 2019: 3–22.
|
[13] |
刘春, 乐天呈, 施斌, 等. 颗粒离散元法工程应用的三大问题探讨[J]. 岩石力学与工程学报, 2020, 39(6): 1142–1152. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006006.htm
LIU Chun, LE Tian-cheng, SHI Bin, et al. Discussion on three major problems of engineering application of the particle discrete element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1142–1152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006006.htm
|
[14] |
SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179–196.
|
[15] |
SULSKY D, ZHOU S J, SCHREYER H L. Application of a particle-in-cell method to solid mechanics[J]. Computer Physics Communications, 1995, 87(1/2): 236–252.
|
[16] |
BEUTH L, BENZ T, VERMEER P A. Large deformation analysis using a quasi-static material point method[J]. Journal of Theoretical and Applied Mechanics, 2008, 38(1/2): 45–60.
|
[17] |
史卜涛, 张云, 张巍. 边坡稳定性分析的物质点强度折减法[J]. 岩土工程学报, 2015, 38(9): 1678–1684. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609018.htm
SHI Bo-tao, ZHANG Yun, ZHANG Wei. Strength reduction material point method for slope stability[J]. Chinese Journal of Geotechnical Engineering, 2015, 38(9): 1678–1648. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609018.htm
|
[18] |
孙玉进, 宋二祥. "12·20"深圳滑坡动态模拟[J]. 岩土工程学报, 2018, 40(3): 441–448. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803009.htm
SUN Yu-jin, SONG Er-xiang. Dynamic simulation of "12·20" Shenzhen landslide[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 441–448. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803009.htm
|
[19] |
张春新, 朱鸿鹄, 李豪杰, 等. 支护压力控制下隧道周围砂土变形破坏物质点法模拟[J]. 浙江大学学报(工学版), 2021, 55(7): 1317–1326. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202107011.htm
ZHANG Chun-xin, ZHU Hong-hu, LI Hao-jie, et al. Material point method simulations of sand deformation and failure around tunnel controlled by support pressure[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(7): 1317–1326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202107011.htm
|
[20] |
张芮瑜, 孙玉进, 宋二祥. 强夯的物质点法模拟及其能量转化规律分析[J]. 岩土工程学报, 2019, 41(7): 1208–1216. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907005.htm
ZHANG Rui-yu, SUN Yu-jin, SONG Er-xiang. Simulation of dynamic compaction using material point method and analysis of its energy conversion law[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1208–1216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907005.htm
|
[21] |
张春新, 朱鸿鹄, 周谷宇, 等. 落球检测技术的三维物质点法模拟研究[J]. 防灾减灾工程学报, 2021, 41(2): 311–320. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202102014.htm
ZHANG Chun-xin, ZHU Hong-hu, ZHOU Gu-yu, et al. Simulation of falling ball test using three-dimensional material point method[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(2): 311–320. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202102014.htm
|
[22] |
COETZEE C J, VERMEER P A, BASSON A H. The modelling of anchors using the material point method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(9): 879–895. doi: 10.1002/nag.439
|
[23] |
CECCATO F, BISSON A, COLA S. Large displacement numerical study of 3D plate anchors[J]. European Journal of Environmental and Civil Engineering, 2020, 24(4): 520–538. doi: 10.1080/19648189.2017.1408498
|
[24] |
陈榕, 符胜男, 郝冬雪, 等. 密砂中圆形锚上拔承载力尺寸效应分析[J]. 岩土工程学报, 2019, 41(1): 78–85. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901012.htm
CHEN Rong, FU Sheng-nan, HAO Dong-xue, et al. Scale effects of uplift capacity of circular anchors in dense sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 78–85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901012.htm
|
[25] |
FERN E J, DE LANGE D A, ZWANENBURG C, et al. Experimental and numerical investigations of dyke failures involving soft materials[J]. Engineering Geology, 2017, 219: 130–139. doi: 10.1016/j.enggeo.2016.07.006
|
[26] |
FERN E J, SOGA K. The role of constitutive models in MPM simulations of granular column collapses[J]. Acta Geotechnica, 2016, 11 (3): 659–678. doi: 10.1007/s11440-016-0436-x
|
[27] |
蔡正银. 砂土的渐进破坏及其数值模拟[J]. 岩土力学, 2008, 29(3): 580–585. doi: 10.3969/j.issn.1000-7598.2008.03.002
CAI Zheng-yin. Progressive failure of sand and its numerical simulation[J]. Rock and Soil Mechanics, 2008, 29(3): 580–585. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.03.002
|
[28] |
BOLTON M D. The strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65–78. doi: 10.1680/geot.1986.36.1.65
|
[29] |
朱泳, 朱鸿鹄, 李飞, 等. 砂土中水平锚板抗拔特性试验研究[J]. 中南大学学报(自然科学版), 2018, 49(7): 1768–1774. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201807025.htm
ZHU Yong, ZHU Hong-hu, LI Fei, et al. Experimental study on uplift behavior of anchor plate in sand[J]. Journal of Central South University (Science and Technology), 2018, 49(7): 1768–1774. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201807025.htm
|
[30] |
张昕, 乐金朝, 刘明亮, 等. 砂土中锚板的抗拔机理与承载力计算模型研究[J]. 岩土工程学报, 2012, 34(9): 1734–1739. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201209032.htm
ZHANG Xin, YUE Jin-chao, LIU Ming-liang, et al. Uplifting behavior and bearing capacity of plate anchors in sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1734–1739. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201209032.htm
|
[31] |
郝冬雪, 岳冲, 陈榕, 等. 常压至高压下中砂剪切特性及应力–剪胀关系[J]. 岩土工程学报, 2020, 42(4): 765–772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004027.htm
HAO Dong-xue, YUE Chong, CHEN Rong, et al. Shear characteristics and stress-dilation relation of medium sand under normal to high pressures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 765–772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004027.htm
|
[32] |
SAEEDY H S. Stability of circular vertical earth anchors[J]. Canadian Geotechnical Journal, 1987, 24(3): 452–456. doi: 10.1139/t87-056
|
[33] |
MURRAY E J, GEDDES J D. Uplift of anchor plates in sand[J]. Journal of Geotechnical Engineering, 1987, 113(3): 202–215. doi: 10.1061/(ASCE)0733-9410(1987)113:3(202)
|
[34] |
LIU J Y, LIU M L, ZHU Z D. Sand deformation around an uplift plate anchor[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 728–737. doi: 10.1061/(ASCE)GT.1943-5606.0000633
|
[35] |
桂美兵. 砂土中锚板抗拔承载力室内试验研究[D]. 合肥: 合肥工业大学, 2020.
GUI Mei-bing. Pullout Capacity of Plate Anchor in Sand by Laboratory Test[D]. Hefei: Hefei University of Technology, 2020. (in Chinese)
|
[36] |
SAKAI T, TANAKA T. Scale effect of a shallow circular anchor in dense sand[J]. Soils and Foundations, 1998, 38(2): 93–99. doi: 10.3208/sandf.38.2_93
|
[37] |
史旦达, 毛逸瑶, 杨勇, 等. 基于DIC技术的砂土中圆形锚板上拔土体变形特性试验研究[J]. 岩土力学, 2020, 41(10): 3201–3213. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010005.htm
SHI Dan-da, MAO Yi-yao, YANG Yong, et al. Experimental study on the deformation characteristics of soils around uplift circular plate anchors using digital image correlation technology[J]. Rock and Soil Mechanics, 2020, 41(10): 3201–3213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010005.htm
|
[38] |
倪钰菲, 乔仲发, 朱泳, 等. 基于粒子图像测速的锚板抗拔破坏机理试验研究[J]. 土木与环境工程学报(中英文), 2020, 42(1): 24–30. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202001004.htm
NI Yu-fei, QIAO Zhong-fa, ZHU Yong, et al. Experimental study on uplift failure of anchor plate based on PIV technology[J]. Journal of Civil and Environmental Engineering, 2020, 42(1): 24–30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202001004.htm
|
[39] |
WHITE D J, CHEUK C Y, BOLTON M D. The uplift resistance of pipes and plate anchors buried in sand[J]. Géotechnique, 2008, 58(10): 771–779. doi: 10.1680/geot.2008.3692
|