• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAI Zheng-yin. Innovation and development of earth pressure theories for sheet-pile structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 201-220. DOI: 10.11779/CJGE202002001
Citation: CAI Zheng-yin. Innovation and development of earth pressure theories for sheet-pile structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 201-220. DOI: 10.11779/CJGE202002001

Innovation and development of earth pressure theories for sheet-pile structures

  • The main loads on a sheet-pile wharf are the earth pressures acting on its front wall. On one hand, they are induced by the imbalance of earth pressures at both sides of the front wall owing to excavation of harbor basin; on the other hand, the surface loads of the wharf acting on the foundation soils further increase the landward earth pressures of the front wall. For the sharply increasing earth pressures on the front wall induced by the excavation depth of harbor basin which is required by deep-water sheet-pile wharves, the "barrier" and "unloading" measures are the effective ways to reduce the earth pressures on the front wall. The presence of barrier piles and relief platform leads to more complex forces acting on the sheet-pile structures, and the key scientific and technical problem concerned is the interaction between the soils and the structures. With regard to the earth pressure problems during the development of novel structures such as barrier and separated unloading sheet-pile wharves, a series of researches are performed to lay the theoretical foundation for the development of the novel structure of deep-water sheet-pile wharf, including influences of soil density and grain size on earth pressures at rest, silo effects and barrier effects of earth pressures on barrier sheet-pile structures, and unloading effects of earth pressures of separated unloading sheet-pile structures.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return