• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, LI Jie, DENG Shu-xin. Comparative study on damage characterization and damage evolution of rock under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1074-1082. DOI: 10.11779/CJGE201906011
Citation: ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, LI Jie, DENG Shu-xin. Comparative study on damage characterization and damage evolution of rock under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1074-1082. DOI: 10.11779/CJGE201906011

Comparative study on damage characterization and damage evolution of rock under uniaxial compression

More Information
  • Received Date: May 13, 2018
  • Published Date: June 24, 2019
  • The evolution of stress-strain data, acoustic emission (AE) and ultrasonic characteristics of granite under uniaxial compression are synchronously tested by using the ultrasonic wave and AE synchronous monitoring devices. The macro- and meso-characteristics of the stress thresholds are analyzed. Also, the quantitative damage evolution of granite is inferred by the crack volumetric strain, AE parameters and ultrasonic characteristics. The results show that the crack initiation stress inferred by the crack volumetric strain and ultrasonic velocity coincides well, and the stress thresholds inferred by the AE events, AE amplitude distribution and b-value are basically identical, but the damage accumulation inferred by the AE events initially begins earlier than that by the macroscopic deformation and ultrasonic testing. At the initial loading stage, the ultrasonic velocity and velocity anisotropy coefficient K increase, and the increase rate slows down gradually. After the crack initiation stress, the lateral velocity begins to decrease, while K gradually increases. With the rapid coalescence of cracks, the amplitudes of AE signals increase significantly prior to the rock failure, accompanied by the rapid decline of b-value and dramatic increase of AE energy. Assuming that the damage accumulation begins only after the crack initiation stress, the damage evolution of granite is characterized by various parameters, such as the crack volumetric strain and AE event. It’s revealed that the majority of damage occurs after the damage stress. The damage characterized by the crack volumetric strain has a clear physical meaning, but the selection of Poisson's ratio for calculating the crack volumetric strain is somewhat subjective. The damages haracterized by the crack volumetric strain, AE energy and modulus all increase significantly prior to the peak stress, which coincides with the rapid decline of b-value. It’s suggested that the damage estimation using the AE energy method should be preferred from the perspective of the reliability of the obtained damage values.
  • [1]
    BRACE W F, PAULDING B W, SCHOLZ C.Dilatancy in the fracture of crystalline rocks[J]. Journal of Geophysical Research, 2012, 71(16): 3939-3953.
    [2]
    MARTIN C D, CHANDLER N A.The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1994, 31(6): 643-659.
    [3]
    MARTIN C D.Seventeenth canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength[J]. Canadian Geotechnical Journal, 1997, 34(5): 698-725.
    [4]
    DIEDERICHS M S.Manuel rocha medal recipient rock fracture and collapse under low confinement conditions[J]. Rock Mechanics and Rock Engineering, 2003, 36(5): 339-381.
    [5]
    SU K, GHOREYCHI M, CHANCHOLE S.Experimental study of damage in granite[J]. Géotechnique, 2000, 50(3): 235-241.
    [6]
    KIM J, LEE K, CHO W, et al.A comparative evaluation of stress-strain and acoustic emission methods for quantitative damage assessments of brittle rock[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 495-508.
    [7]
    GANNE P, VERVOORT A.Effect of stress path on pre-peak damage in rock induced by macro-compressive and -tensile stress fields[J]. International Journal of Fracture, 2007, 144(2): 77-89.
    [8]
    YANG S Q, JING H W.Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression[J]. International Journal of Fracture, 2011, 168(2): 227-250.
    [9]
    DIEDERICHS M S, KAISER P K, EBERHARDT E.Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 785-812.
    [10]
    曾鹏, 刘阳军, 纪洪广, 等. 单轴压缩下粗砂岩临界破坏的多频段声发射耦合判据和前兆识别特征[J]. 岩土工程学报, 2017, 39(3): 509-517.
    (ZENG Peng, LIU Yang-jun, JI Hong-guang, et al.Coupling criteria and precursor identification characteristics of multi-band acoustic emission of gritstone fracture under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 509-517. (in Chinese))
    [11]
    EBERHARDT E, STEAD D, STIMPSON B, et al.Identifying crack initiation and propagation thresholds in brittle rock[J]. Canadian Geotechnical Journal, 1998, 35(2): 222-233.
    [12]
    LOKAJÍČEK T, GOEL R K, RUDAJEV V, et al. Assessment of velocity anisotropy in rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 57: 142-152.
    [13]
    LOCKNER D.The role of acoustic emission in the study of rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 883-899.
    [14]
    GANNE P, VERVOORT A, WEVERS M.Quantification of pre-peak brittle damage: correlation between acoustic emission and observed micro-fracturing[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 720-729.
    [15]
    ZHANG Z, ZHANG R, XIE H, et al.Differences in the acoustic emission characteristics of rock salt compared with granite and marble during the damage evolution process[J]. Environmental Earth Sciences, 2015, 73(11): 6987-6999.
    [16]
    TANG C A, XU X H.Evolution and propagation of material defects and kaiser effect function[J]. Journal of Seismological Research, 1990, 13(2): 203-213.
    [17]
    EBERHARDT E, STEAD D, STIMPSON B.Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3): 361-380.
    [18]
    刘保县, 黄敬林, 王泽云, 等. 单轴压缩煤岩损伤演化及声发射特性研究[J]. 岩石力学与工程学报, 2009(增刊1): 3234-3238.
    (LIU Bao-xian, HUANG Jing-lin, WANG Ze-yun, et al.Study on damage evolution and acoustic emission character of coal-rock under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2009(S1): 3234-3238. (in Chinese))
    [19]
    KING M S.Elastic wave propagation in and permeability for rocks with multiple parallel fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(8): 1033-1043.
    [20]
    KING M S, CHAUDHRY N A, SHAKEEL A.Experimental ultrasonic velocities and permeability for sandstones with aligned cracks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(2): 155-163.
    [21]
    PETRUŽÁLEK M, VILHELM J, RUDAJEV V, et al. Determination of the anisotropy of elastic waves monitored by a sparse sensor network[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 208-216.
    [22]
    CHOW T M, MEGLIS I L, YOUNG R P.Progressive microcrack development in tests on Lac du Bonnet granite: Ⅱ Ultrasonic tomographic imaging[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(8): 751-761.
    [23]
    OUGIER-SIMONIN A, FORTIN J, GUÉGUEN Y, et al. Cracks in glass under triaxial conditions[J]. International Journal of Engineering Science, 2011, 49(1): 105-121.
    [24]
    张国凯, 李海波, 夏祥, 等. 岩石波速与损伤演化规律研究[J]. 岩石力学与工程学报, 2015, 34(11): 2270-2277.
    (ZHANG Guo-kai, LI Hai-bo, XIA Xiang, et al.Wave velocity and damage development of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2270-2277. (in Chinese))
    [25]
    张国凯, 李海波, 夏祥, 等. 单轴加载条件下花岗岩声发射及波传播特性研究[J]. 岩石力学与工程学报, 2017, 36(5): 1133-1144.
    (ZHANG Guo-kai, LI Hai-bo, XIA Xiang, et al.Experiment study on acoustic emission and wave propagation in granite under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1133-1144. (in Chinese))
    [26]
    BIENIAWSKI Z T.Mechanism of brittle fracture of rock, Parts II and III[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(6): 395-430.
    [27]
    BRACE W F, WALSH J B, FRANGOS W T.Permeability of granite under high pressure[J]. Journal of Geophysical Research, 2012, 73(6): 2225-2236.
    [28]
    FORTIN JÉRÔME, GUÉGUEN YVES, SCHUBNEL ALEXANDRE. Effects of pore collapse and grain crushing on ultrasonic velocities and Vp/Vs[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B8): 582-596.
    [29]
    GUTENBERG G, RICHTER C F.Seismicity of the earth and associated phenomena, Howard Tatel[J]. Journal of Geophysical Research, 1950, 55: 97.
    [30]
    RAO M V M S, LAKSHMI K J P. Analysis of b-value and improved b-value of acoustic emissions accompanying rock fracture[J]. Current Science, 2005, 89(9): 1577-1582.
    [31]
    LEI X L, KUSUNOSE K, RAO M V M S, et al. Quasi‐static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B3): 6127-6139.
    [32]
    KACHANOV L M.Time of the rupture process under creep conditions[J]. Izv Akad Nauk SSR Otd Tech Nauk, 1958, 8: 26-31.
    [33]
    KAWAMOTO T, ICHIKAWA Y, KYOYA T.Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 1-30.
    [34]
    谢和平, 鞠杨, 黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008, 27(9): 1729-1740.
    (XIE He-ping, JU Yang, LI Li-yun, et al.Energy mechanism of deformation and failure of rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1729-1740. (in Chinese))
  • Cited by

    Periodical cited type(37)

    1. 李东杰,王帅旗,曹阔. 单轴作用下岩石的破坏行为及声发射响应特征研究. 煤. 2025(01): 27-31+37 .
    2. 杨仁树,肖成龙,左进京,李国营,王浩,许鹏,丁晨曦,李永亮,王雁冰,赵勇,游帅,刘朕,张渊通. 岩石爆破基础理论研究进展与展望Ⅳ—损伤评价. 工程科学学报. 2025(04): 583-593 .
    3. 梁昕宇,武增彪,李文海. 细观混凝土试件单位面积破坏能研究. 混凝土. 2025(03): 85-90 .
    4. 刘冬桥,郭允朋,李杰宇,凌凯. 基于耗散能演化的层状黄砂岩损伤本构模型及其验证. 工程科学学报. 2024(05): 784-799 .
    5. 陈元广,陈彦龙,吕承贤,顾军,张家龙,张亚飞,李强. 不同加载速率下废石胶结充填体的力学特性及破裂特征研究. 煤矿安全. 2024(05): 160-169 .
    6. 王艳超,高利平,李驰,任荣鹏,尹博. 乌海矿区奥灰岩单轴声发射响应特征及损伤演化规律研究. 内蒙古工业大学学报(自然科学版). 2024(04): 360-367 .
    7. 何风贞,李桂臣,阚甲广,许兴亮,冯晓巍,孙元田. 岩石多尺度损伤研究进展. 煤炭科学技术. 2024(10): 33-53 .
    8. 杨信美,张晓平,王汇明,朱事业. 甘肃玉门抽水蓄能电站变质软岩遇水软化力学特性试验研究. 武汉大学学报(工学版). 2024(11): 1587-1597 .
    9. 陈文昭,胡荣,刘夕奇,卢铎方. 高温作用后玄武岩声发射特性及破裂机制研究. 南华大学学报(自然科学版). 2024(03): 15-23+31 .
    10. 吕鹏飞,路康斌,曹树斌,丛日盛. 冲击倾向煤样在不同应变率载荷作用下破裂的声发射及碎片分形特征. 工矿自动化. 2023(01): 123-130+139 .
    11. 梁鹏,李壮,刘俊岭,王聚贤,王骏涛. 三点弯曲试验下花岗岩应变场及损伤演化研究. 地下空间与工程学报. 2023(02): 486-494 .
    12. 刘冬桥,郭允朋,李杰宇,凌凯,杨园园,张树东. 基于声发射的脆性岩石单轴压缩损伤演化与本构模型. 中国矿业大学学报. 2023(04): 687-700 .
    13. 季明,孙中光,刘文朋,张益东. 基于幂函数分布的砂岩损伤本构模型研究. 西安建筑科技大学学报(自然科学版). 2023(03): 324-331 .
    14. 刘沂琳,王创业,李昕昊. 水-岩作用下砂岩声发射与红外辐射耦合研究. 长江科学院院报. 2022(01): 127-133 .
    15. 栗青,常兆荣,高阳,张春生,张传庆,周辉. 隐晶质玄武岩的应变演化规律与强度破坏特征. 沈阳工业大学学报. 2022(01): 109-115 .
    16. 范杰,朱星,胡桔维,唐垚,贺春蕾. 基于3D-DIC的砂岩裂纹扩展及损伤监测试验研究. 岩土力学. 2022(04): 1009-1019 .
    17. 宋彦琦,马宏发,刘济琛,李向上,郑俊杰,傅航. 冻融灰岩单轴声发射损伤特性试验研究. 岩石力学与工程学报. 2022(S1): 2603-2614 .
    18. 陈云娟,高涛,高成路,尹延春,李艳龙. 水力耦合作用下裂隙岩体破裂扩展及声发射能量损伤规律. 中南大学学报(自然科学版). 2022(06): 2325-2335 .
    19. 任恒,朱永建,廖洪波,赵俊,吴寻云. 岩石三轴卸载-单轴再加载声发射特性及破坏模式. 矿业工程研究. 2022(03): 7-12 .
    20. 封陈晨,李傲,王志亮,王浩然. 锦屏大理岩单轴压缩过程中的微结构演化. 水文地质工程地质. 2022(06): 90-96 .
    21. 李季,段燕伟. 不同加载方式下岩石力学特性及能量演化规律. 价值工程. 2022(07): 123-125 .
    22. 刘树新,邢杰,郑旭,陈世杰. 岩石轴压CT图像的分区损伤信息与临界破坏识别. 岩土工程学报. 2021(03): 432-438 . 本站查看
    23. 张超,杨楚卿,白允. 岩石类脆性材料损伤演化分析及其模型方法研究. 岩土力学. 2021(09): 2344-2354 .
    24. 朱永建,任恒,王平,余伟健,李鹏,张玉群. 损伤石灰岩单轴再加载力学特性及破坏机理. 哈尔滨工业大学学报. 2021(11): 119-126 .
    25. 杨森,刘启蒙,刘瑜. 单轴压缩下不同倾角交叉裂隙扩展演化研究. 山东煤炭科技. 2021(10): 166-169+173 .
    26. 郜欣,徐颖,李成杰,谢平,曹紊源. 不同应力比的循环荷载下砂岩变形损伤特性研究. 中国安全生产科学技术. 2021(11): 60-64 .
    27. 朱权洁,张尔辉,李青松,高林生,张震. 岩石破坏失稳的声发射响应与损伤定量表征研究. 中国安全生产科学技术. 2020(01): 92-98 .
    28. 刘黎旺,李海波,李晓锋,张国凯,武仁杰. 基于矿物晶体模型非均质岩石单轴压缩力学特性研究. 岩土工程学报. 2020(03): 542-550 . 本站查看
    29. 王林涛,刘启蒙,刘瑜. 不同倾角裂隙粉砂岩扩展过程试验与模拟. 中国科技论文. 2020(01): 89-93 .
    30. 杨爽,邓建辉,何治良. 单轴加载条件下大理岩的实时轴向波速变化特征与频谱分析. 矿业研究与开发. 2020(04): 46-51 .
    31. 赵慧子,梁正召,刘祥鑫. 三点弯曲试验条件下的岩石声发射演化特征. 水利与建筑工程学报. 2020(02): 6-12 .
    32. 张艳博,吴文瑞,姚旭龙,梁鹏,田宝柱,黄艳利,梁精龙. 单轴压缩下花岗岩声发射、红外特征及损伤演化试验研究. 岩土力学. 2020(S1): 139-146 .
    33. 郭运宏,马芹永. 充填节理砂岩波速及强度影响试验研究. 安徽理工大学学报(自然科学版). 2020(03): 71-76 .
    34. 张超,白允. 参数型岩石几何损伤模型的构建及其应用研究. 岩土力学. 2020(12): 3899-3909 .
    35. 宿辉,张玉廷,李琦,袁周祥,高轩. 岩石-混凝土一体两介质体声发射试验结合离散元方法. 科学技术与工程. 2019(23): 206-210 .
    36. 田彦德. 基于孔隙度变化规律的石灰岩单轴压缩损伤度表征方法. 山西焦煤科技. 2019(10): 32-34 .
    37. 张艳博,王科学,姚旭龙,黄艳利,孙林,梁鹏,田宝柱,梁精龙. 基于波速场成像技术的岩石损伤评价研究. 岩石力学与工程学报. 2019(12): 2404-2417 .

    Other cited types(46)

Catalog

    Article views (388) PDF downloads (236) Cited by(83)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return