• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Li-wang, LI Hai-bo, LI Xiao-feng, ZHANG Guo-kai, WU Ren-jie. Research on mechanical properties of heterogeneous rocks using grain-based model under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 542-550. DOI: 10.11779/CJGE202003016
Citation: LIU Li-wang, LI Hai-bo, LI Xiao-feng, ZHANG Guo-kai, WU Ren-jie. Research on mechanical properties of heterogeneous rocks using grain-based model under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 542-550. DOI: 10.11779/CJGE202003016

Research on mechanical properties of heterogeneous rocks using grain-based model under uniaxial compression

More Information
  • Received Date: April 03, 2019
  • Available Online: December 07, 2022
  • In order to investigate the influences of structural heterogeneity on the mechanical properties and crack growth of rocks, the microstructure of granite is modelled by using grain-based model (GBM). In comparison with the results of laboratory experiments, the properties of stress-strain curves, acoustic emission and grain-scale crack growth of rocks with different mineralogies are investigated. The results show that GBM can be used to efficiently study the macro- and micro-mechanical properties of rocks when the mineral components have different structures and strengths. The grain-scale cracks in rocks are mainly intergranular cracks at the onset of loading, then the intragranular cracks become predominant inversely, and the failure pattern of cracks is always dominated by tensile cracks. When the model fails, the ratios of intergranular and intragranular cracks to total cracks are about 93.87% and 60.95%, respectively. During the whole loading, the locations of microcracks are first located randomly, then the clustering of microcracks leads to the appearance of macroscopic failure surface, and the formation of failure surface is related to the propagation and coalescence of intragranular cracks. When the feldspar mineral in rocks increases, the corresponding peak stress and damage stress increase due to the increase of intragranular cracks formed in feldspar mineral and the decrease of intragranular cracks formed in biotite mineral. In this study, the modelling of micro-structure based on GBM and the reason why heterogeneous rocks behave different mechanical properties may promote our understanding of the influences of rock heterogeneity on the mechanical properties.
  • [1]
    BASS J D. Elasticity of minerals, glasses, and melts[J]. Mineral Physics & Crystallography: a Handbook of Physical Constants, 1995, 2: 45-63.
    [2]
    COWIE S, WALTON G. The effect of mineralogical parameters on the mechanical properties of granitic rocks[J]. Engineering Geology, 2018, 240: 204-225. doi: 10.1016/j.enggeo.2018.04.021
    [3]
    YILMAZ N G, GOKTAN R M, KIBICI Y. Relations between some quantitative petrographic characteristics and mechanical strength properties of granitic building stones[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 3(48): 506-513.
    [4]
    LI X F, LI X, LI H B, et al. Dynamic tensile behaviours of heterogeneous rocks: the grain scale fracturing characteristics on strength and fragmentation[J]. International Journal of Impact Engineering, 2018, 118: 98-118. doi: 10.1016/j.ijimpeng.2018.04.006
    [5]
    SAJID M, COGGAN J, ARIF M, et al. Petrographic features as an effective indicator for the variation in strength of granites[J]. Engineering Geology, 2016, 202: 44-54. doi: 10.1016/j.enggeo.2016.01.001
    [6]
    TANDON R S, GUPTA V. The control of mineral constituents and textural characteristics on the petrophysical & mechanical (PM) properties of different rocks of the Himalaya[J]. Engineering Geology, 2013, 153: 125-143. doi: 10.1016/j.enggeo.2012.11.005
    [7]
    PŘIKRYL R. Some microstructural aspects of strength variation in rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 671-682. doi: 10.1016/S1365-1609(01)00031-4
    [8]
    TUĞRUL A, ZARIF I H. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey[J]. Engineering Geology, 1999, 51(4): 303-317. doi: 10.1016/S0013-7952(98)00071-4
    [9]
    ÜNdül Ö. Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks[J]. Engineering Geology, 2016, 210: 10-22. doi: 10.1016/j.enggeo.2016.06.001
    [10]
    ÜNDÜL Ö, AMANN F, AYSAL N, et al. Micro-textural effects on crack initiation and crack propagation of andesitic rocks[J]. Engineering Geology, 2015, 193: 267-275. doi: 10.1016/j.enggeo.2015.04.024
    [11]
    EBERHARDT E, STIMPSON B, STEAD D. Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures[J]. Rock Mechanics and Rock Engineering, 1999, 32(2): 81-99. doi: 10.1007/s006030050026
    [12]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
    [13]
    LI X F, LI H B, LIU Y Q, et al. Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs[J]. Tunnelling and Underground Space Technology, 2016, 53: 96-108. doi: 10.1016/j.tust.2015.12.010
    [14]
    CHO N, MARTIN C D, SEGO D C. A clumped particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 997-1010. doi: 10.1016/j.ijrmms.2007.02.002
    [15]
    刘广, 荣冠, 彭俊, 等. 矿物颗粒形状的岩石力学特性效应分析[J]. 岩土工程学报, 2013, 35(3): 540-550. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303020.htm

    LIU Guang, RONG Guan, PENG Jun, et al. Mechanical behaviors of rock affected by mineral particle shapes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 540-550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303020.htm
    [16]
    LI X F, ZHANG Q B, LI H B, et al. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading[J]. Rock Mechanics and Rock Engineering, 2018, 51(12): 3785-3817. doi: 10.1007/s00603-018-1566-2
    [17]
    LAN H, MARTIN C D, HU B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B01202): 1-14.
    [18]
    LI X F, LI H B, ZHAO J. 3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock[J]. Computers and Geotechnics, 2017, 90: 96-112. doi: 10.1016/j.compgeo.2017.05.023
    [19]
    周喻, 高永涛, 吴顺川, 等. 效晶质模型及岩石力学特征细观研究[J]. 岩石力学与工程学报, 2015, 34(3): 511-519.

    ZHOU Yu, GAO Yong-tao, WU Shun-chuan, et al. An equivalent crystal model for mesoscopic behaviour of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 511-519. (in Chinese)
    [20]
    BEWICK R P, KAISER P K, BAWDEN W F, et al. DEM simulation of direct shear: 1 Rupture under constant normal stress boundary conditions[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1647-1671. doi: 10.1007/s00603-013-0490-8
    [21]
    HOFMANN H, BABADAGLI T, ZIMMERMANN G. A grain based modeling study of fracture branching during compression tests in granites[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 152-162. doi: 10.1016/j.ijrmms.2015.04.008
    [22]
    PENG J, WONG L N Y, TEH C I, et al. Modeling micro-cracking behavior of Bukit Timah granite using grain-based model[J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 135-154. doi: 10.1007/s00603-017-1316-x
    [23]
    POTYONDY D O. A grain-based model for rock: approaching the true microstructure[C]//Proceedings of the Rock Mechanics in the Nordic Countries, 2010, Kongsberg: 225-234.
    [24]
    ZHANG Y, WONG L N Y, CHAN K K. An Extended Grain‐Based Model Accounting for Microstructures in Rock Deformation[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 125-148. doi: 10.1029/2018JB016165
    [25]
    PENG J, WONG L N Y, TEH C I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 1054-1073. doi: 10.1002/2016JB013469
    [26]
    LI X F, LI H B, ZHAO J. The role of transgranular capability in grain-based modelling of crystalline rocks[J]. Computers and Geotechnics, 2019, 110: 161-183. doi: 10.1016/j.compgeo.2019.02.018
    [27]
    MEHRANPOUR M H, KULATILAKE P H S W. Improvements for the smooth joint contact model of the particle flow code and its applications[J]. Computers and Geotechnics, 2017, 87: 163-177. doi: 10.1016/j.compgeo.2017.02.012
    [28]
    DIEDERICHS M S, KAISER P K, EBERHARDT E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 785-812. doi: 10.1016/j.ijrmms.2004.02.003
    [29]
    张国凯, 李海波, 王明洋, 等. 岩石单轴压缩下损伤表征及演化规律对比研究[J]. 岩土工程学报, 2019, 41(6): 1074-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906013.htm

    ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, et al. Comparative study on damage characterization and damage evolution of rock under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1074-1082. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906013.htm
    [30]
    朱俊, 邓建辉, 黄弈茗, 等. 饱和大理岩特征强度试验研究[J]. 岩石力学与工程学报, 2019, 38(6): 1129-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906005.htm

    ZHU Jun, DENG Jian-hui, HUANG Yi-min, et al. Experimental study on the characteristic strength of saturated marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1129-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906005.htm
    [31]
    HAZZARD J F, YOUNG R P, MAXWELL S C. Micromechanical modeling of cracking and failure in brittle rocks[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B7): 16683-16697. doi: 10.1029/2000JB900085
    [32]
    穆康, 李天斌, 俞缙, 等. 围压效应下砂岩声发射与压缩变形关系的细观模拟[J]. 岩石力学与工程学报, 2014, 33(增刊1): 2786-2793. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1028.htm

    MU Kang, LI Tian-bin, YU Jin, et al. Mesoscopic simulation of relationship of acoustic emission and compressive deformation behavior in sandstone under confining pressure effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2786-2793. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1028.htm
    [33]
    KRANZ R L. Crack-crack and crack-pore interactions in stressed granite[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, Pergamon: 37-47.
    [34]
    MOORE D E, LOCKNER D A. The role of microcracking in shear-fracture propagation in granite[J]. Journal of Structural Geology, 1995, 17(1): 95-114. doi: 10.1016/0191-8141(94)E0018-T
  • Cited by

    Periodical cited type(24)

    1. 方华强,丁选明,张灵芝,李一夫,王红,辛义文,彭宇,李铮. 基于粒子图像测速技术的纤维改性珊瑚泥面层龟裂模型试验研究. 岩土力学. 2025(02): 368-380 .
    2. 秦鹏举,轩龙龙,王建美,邢鲜丽. 干湿循环作用下非饱和压实黄土变形和电阻率特征的室内试验. 同济大学学报(自然科学版). 2025(04): 565-573 .
    3. 刘晓红,王宇鑫,刘昱辰,蔡海星,刘三县. 考虑填土压实度的主动破裂带模型试验研究. 湖南理工学院学报(自然科学版). 2025(01): 37-44 .
    4. 牟春梅,李刘悦,夏燚. 基于摄影测量的三轴土体剪切带演化规律. 工程科学学报. 2024(05): 927-936 .
    5. 高乾丰,吴昕阳,曾铃,余慧聪,余涵. 红黏土裂隙湿化自愈行为及强度影响机制. 中国公路学报. 2024(06): 157-168 .
    6. 张少卫,党发宁,范翔宇,管浩. 机制砂级配及含量对压实膨胀土干缩裂隙演化规律. 西安工业大学学报. 2024(03): 366-374 .
    7. 胡长明,胡婷婷,朱武卫,袁一力,杨晓,柳明亮,侯旭辉. 干湿循环作用下压实黄土裂隙演化特征. 长江科学院院报. 2024(08): 96-103+112 .
    8. 张红日,杨济铭,徐永福,肖杰,韩仲,汪磊,林宇亮. 基于数字图像相关技术的膨胀土三维裂隙扩展特性研究. 岩土力学. 2024(S1): 309-323 .
    9. 韩杰欣,邓芷慧,王旌靡,邓羽松,黄智刚,段晓倩. 干湿交替条件下花岗岩崩岗区土壤裂隙发育规律. 水土保持学报. 2024(05): 262-271 .
    10. 杨济铭,张红日,陈林,徐永福. 基于数字图像相关技术的膨胀土边坡裂隙形态演化规律分析. 中南大学学报(自然科学版). 2022(01): 225-238 .
    11. 任意,江兴元,吴长虹,孟生勇,赵珍贤. 干湿循环下红黏土斜坡裂隙性和水土响应试验研究. 水利水电技术(中英文). 2022(04): 172-179 .
    12. 龙郧铠,张家明,陈茂. 中国南方碳酸盐岩上覆红黏土龟裂研究进展. 武汉理工大学学报(交通科学与工程版). 2022(03): 506-512 .
    13. 李关洋,顾凯,王翔,施斌. 含裂隙膨胀土无侧限抗压强度特征试验研究. 水文地质工程地质. 2022(04): 62-70 .
    14. 祝艳波,刘耀文,郑慧涛,赵丹,丁绮萱,兰恒星. 基于DIC技术的三趾马红土表面干缩裂纹扩展与自愈规律. 工程地质学报. 2022(04): 1157-1168 .
    15. 王崇宇,刘晓平,曹周红,毛文涛,蔡忠志. 有限宽度土体被动土压力及滑裂面试验研究. 地下空间与工程学报. 2022(04): 1250-1258+1265 .
    16. 汪时机,骆赵刚,李贤,文桃. 考虑局部含水率效应的浅层土体开裂过程与力学机制分析. 岩土力学. 2021(05): 1395-1403 .
    17. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 .
    18. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 .
    19. 王娜,王佳妮,张晓明,段晓阳. 控制厚度条件下崩岗土体的裂隙演化特征. 水土保持学报. 2021(06): 175-182 .
    20. 张曼婷,吴明亮,陈爱军,潘晓屹,李晨嘉,黄文昭,李文涛. 基于DIC技术的红黏土干缩开裂试验研究. 湖南城市学院学报(自然科学版). 2021(06): 7-11 .
    21. 陈爱军,陈俊桦,程峰,吴迪. 湖南邵阳地区高液限红黏土干缩裂隙演化过程的量化分析. 农业工程学报. 2021(20): 146-153 .
    22. 蔡正银,朱锐,黄英豪,张晨,郭万里,陈皓. 冻融过程对膨胀土渠道边坡劣化模式的影响. 水利学报. 2020(08): 915-923 .
    23. 唐朝生. 极端气候工程地质:干旱灾害及对策研究进展. 科学通报. 2020(27): 3009-3027+3008 .
    24. 史晓东,刘洋. 基于特征显著性的地震灾害发生后建筑物裂缝智能检测模型. 灾害学. 2020(04): 38-42 .

    Other cited types(17)

Catalog

    Article views (468) PDF downloads (231) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return