• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GAO Yi, FENG Chao-yuan, CHENG Peng. Overall-carrying-soil effect of shallow buried rectangular pipe jacking[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1936-1942. DOI: 10.11779/CJGE201810022
Citation: GAO Yi, FENG Chao-yuan, CHENG Peng. Overall-carrying-soil effect of shallow buried rectangular pipe jacking[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1936-1942. DOI: 10.11779/CJGE201810022

Overall-carrying-soil effect of shallow buried rectangular pipe jacking

More Information
  • Received Date: August 22, 2017
  • Published Date: October 24, 2018
  • The shallow-buried rectangular pipe jacking project has gradually increased in recent years. The worldwide researchers have achieved fruitful achievements on thrust, friction and pipe structure. However, there are few researches on the carrying-soil effect of rectangular pipe jacking. So the mechanism of carrying-soil effect is analyzed, and the concept and failure process of the overall-carrying-soil effect are proposed. Four assumptions are proposed to establish the simplified model, and its basic and critical conditions are put forward. Based on the theory of pipe-soil contact, the Coulomb's shear failure strength criterion and the theory of Langham's earth pressure, the prejudgment theory is obtained, which reflects the relationship among overall-carrying-soil effect, jacking length, segment width, pipe soil friction and depth. Then an example is given. The conclusions may provide a theoretical reference for avoiding the overall-carrying-soil effect.
  • [1]
    洪开荣. 我国隧道及地下工程发展现状与展望[J]. 隧道建设, 2015, 35(2): 95-107.
    (HONG Kai-rong.State-of-art and prospect of tunnels and underground works in China[J]. Tunnel Construction, 2015, 35(2): 95-107. (in Chinese))
    [2]
    彭立敏, 王哲, 叶艺超, 等. 矩形顶管技术发展与研究现状[J]. 隧道建设, 2015, 35(1): 1-8.
    (PENG Li-min, WANG Zhe, YE Yi-chao, et al.Technological development and research status of rectangular pipe jacking method[J]. Tunnel Construction, 2015, 35(1): 1-8. (in Chinese))
    [3]
    PELLET-BEAUCOUR A L, KASTNER R. Experimental and analytical study of friction forces during microtunneling operations[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2002, 17(1): 83-97.
    [4]
    REILLY C C, ORR T L L. Physical modelling of the effect of lubricants in pipe jacking[J]. Tunnelling & Underground Space Technology, 2017, 63: 44-53.
    [5]
    荣亮, 杨红军. 郑州市下穿中州大道超大断面矩形隧道顶管姿态控制技术[J]. 隧道建设, 2015, 35(12): 1338-1344.
    (RONG Liang, YANG Hong-jun.Settlement control technology for tunnel crossing underneath zhongzhou avenue in Zhengzhou constructed by super-large rectangular cross-section pipe-jacking machine[J]. Tunnel Construction, 2015, 35(12): 1338-1344. (in Chinese))
    [6]
    魏纲, 魏新江, 徐日庆. 顶管施工引起的挤土效应研究[J]. 岩土力学, 2006, 27(5): 717-722.
    (WEI Gang, WEI Xin-jiang, XU Ri-qing.Study on soil-compacting effects induced by pipe jacking construction[J]. Rock and Soil Mechanics, 2006, 27(5): 717-722. (in Chinese))
    [7]
    熊翦. 矩形顶管关键受力分析[D]. 北京: 中国地质大学, 2013.
    (XIONG Jian.Analysis of critical mechanics of rectangular pipe jacking[D]. Beijing: China University of Geosciences, 2013. (in Chinese))
    [8]
    CECS246—2008 给水排水工程顶管技术规程[S]. 2008.
    (CECS246—2008 Technical specification for pipe jacking of water supply and sewerage engineering[S]. 2008. (in Chinese))
    [9]
    余彬泉, 陈传灿. 顶管施工技术[M]. 北京: 人民交通出版社, 2003.
    (YU Bin-quan, CHEN Chuan-can.Pipe jacking construction technology[M]. Beijing: China Communications Press, 2003. (in Chinese))
    [10]
    张鹏, 马保松, 曾聪, 等. 基于管土接触特性的顶进力计算模型分析[J]. 岩土工程学报, 2017, 39(2): 244-249.
    (ZHANG Peng, MA Bao-song, ZENG Cong, et al.Numerical model for jacking force based on pipe-soil contact characteristics[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 244-249. (in Chinese))
    [11]
    叶艺超, 彭立敏, 杨伟超, 等. 考虑泥浆触变性的顶管顶力计算方法[J]. 岩土工程学报, 2015, 37(9): 1653-1659.
    (YE Yi-chao, PENG Li-min, YANG Wei-chao, et al.Calculation of jacking force for pipe-jacking considering mud slurry thixotropy[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1653-1659. (in Chinese))
    [12]
    日本推進技術協会. 推進工法体系[M]. 东京: 日本推進技術協会, 2013.
    (Japan Micro Tunneling Association. Pipe-jacking application[M]. Tokyo: Japan Micro Tunneling Association, 2013. (in Japanese))
  • Related Articles

    [1]ZHU Wei-jie, ZHEN Liang, XU Wen-yun, LI Xiao-jun. Evolution laws of internal forces in rectangular pipe jacking tunnels with large section and shallow soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 130-133. DOI: 10.11779/CJGE2022S2028
    [2]TIAN Yi, WU Wen-bing, ZHANG Lin, JIANG Guo-sheng, ZONG Meng-fan, MEI Guo-xiong. Consolidation theory of soft foundation with partially penetrating vertical drains under surcharge-vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 533-540. DOI: 10.11779/CJGE202203015
    [3]WANG Hai-jun, TANG Lei, REN Xu-hua, ZHONG Ling-wei, SI Fu-an, HSIEH Ariel. Rock deformation memory effect: applications, experiments and theories[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1571-1583. DOI: 10.11779/CJGE201809002
    [4]YANG Guang-hua. Review of progress and prospect of modern constitutive theories for soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1363-1372. DOI: 10.11779/CJGE201808001
    [5]WANG Hua-ning, GONG Hao, LI Fu-gen, JIANG Ming-jing. Analytical solutions to micro-bond model for particles considering width and thickness of bond[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 822-831. DOI: 10.11779/CJGE201705006
    [6]YANG Guanghua, LI Guangxin. Constitutive theory of soils based on the generalized potential theory[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 594-597.
    [7]LI Xinggao, LIU Weining, ZHANG Mi. Discussion on Coulomb earth pressure theory[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 677-681.
    [8]Wei Rulong. Application of Coulomb’s theory to cohesive soill[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 80-84.
    [9]Bian Fuzong, Zhu Sizhe. Theory and Practice of Soil Shearing Strength[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(2): 62-71.
    [10]Qian Jiahuan, Qian Xuede, Zhao Weibing, Shuai Fangsheng. Theory and Practice of Dynamic Conslidation[J]. Chinese Journal of Geotechnical Engineering, 1986, 8(6): 1-17.
  • Cited by

    Periodical cited type(36)

    1. 张昌桔,姚言,应宏伟,李冰河. 粉土地层双线平行顶管地面沉降及注浆压力数值研究. 地基处理. 2025(01): 60-68 .
    2. 王伟志,刘文壮,李朝煌,徐永福. 软土中浅埋顶管施工变形监测分析. 徐州工程学院学报(自然科学版). 2025(01): 1-6 .
    3. 王开军,张伟,王玮鹏,窦保洋,徐荣超. 超浅覆土大断面矩形顶管近距离双线施工地表沉降规律及加固效果评价. 地质与勘探. 2024(01): 121-131 .
    4. 付增,范晓冬,魏旭鹏,李鹏,余长益. 基于结构分割法的顶管暗挖地铁站建造技术. 都市快轨交通. 2024(04): 88-95 .
    5. 万海峰,沈青松. 浅埋矩形顶管整体背土效应理论计算与分析. 市政技术. 2024(09): 129-134 .
    6. 马晓宾,苏栋,吴永照,吴炯,阳文胜,王雷,陈湘生. 浅埋矩形顶管背土效应全过程理论分析模型. 福州大学学报(自然科学版). 2024(05): 569-576 .
    7. 王虎,李栋,陈雪华,汪旭. 矩形顶管技术的应用与发展. 施工技术(中英文). 2023(01): 26-32 .
    8. 戢鸿鑫,刘跃军,张强,刘志寅,安峻彤,王耀正. 浅埋大断面矩形顶管下穿京杭大运河施工关键技术研究. 施工技术(中英文). 2023(07): 39-45 .
    9. 苏栋,吴炯,王雷,陈湘生,孙波,朱斌. 浅埋超大断面矩形顶管顶进对既有箱涵的影响. 广西大学学报(自然科学版). 2023(01): 1-9 .
    10. 黄建华,叶剑波. 大断面矩形顶管重力锚固基础力学特性分析. 人民长江. 2023(06): 140-146 .
    11. 张双茁,高桂庆,赖金星,张健伟,邱军领. MJS不同加固方式对降低顶管施工影响的效果分析. 建筑科学与工程学报. 2023(05): 183-191 .
    12. 甄亮,张显裕,李晓军. 浅埋矩形顶管整体背土效应判别方法应用与处理措施. 现代隧道技术. 2022(02): 167-171+181 .
    13. 兰彬,张鹏,张云龙,闫雪峰. 矩形顶管管周差异摩阻力对地层纵向水平位移的影响. 地质科技通报. 2022(03): 215-221 .
    14. 贾连辉,谌文涛,范磊,袁征. 特大断面矩形隧道掘进机关键系统设计与应用——结合嘉兴市长水路下穿南湖大道项目. 隧道建设(中英文). 2022(05): 917-928 .
    15. 马鹏,岛田英树,马保松,黄胜,周浩. 矩形顶管关键技术研究现状及发展趋势探讨. 隧道建设(中英文). 2022(10): 1677-1692 .
    16. 高浩,吴炯,阳文胜,苏栋,吴永照,陈湘生. 隔离墙对顶管顶进背土效应的抑制作用研究. 现代隧道技术. 2022(S1): 1120-1126 .
    17. 桂林,任睿祺,史培新,刘维. 浅埋矩形顶管施工引起的地层沉降变化规律. 城市轨道交通研究. 2022(12): 94-100 .
    18. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 .
    19. 赵李勇. 浅埋矩形顶管施工顶推力动态监测分析. 建筑机械化. 2021(03): 13-16 .
    20. 陈志. 软弱地层浅埋矩形顶管沉降控制技术研究. 铁道建筑技术. 2021(08): 144-148 .
    21. 许有俊,黄正东,张旭,张朝,康佳旺,周薇. 大断面土压平衡矩形顶管多刀盘实测扭矩参数研究. 现代隧道技术. 2021(05): 96-103 .
    22. 李启旭,龚建伍,霍震. 浅埋矩形顶管施工地表沉降特性试验研究. 土工基础. 2021(06): 801-804 .
    23. 薛青松. 矩形顶管上穿地铁隧道施工对地表变形影响研究. 山西建筑. 2020(15): 9-11 .
    24. 李育发,李永江. 包头地下综合管廊矩形顶管施工关键技术及地表变形特征. 内蒙古科技大学学报. 2020(03): 289-293+299 .
    25. 薛广记,贾连辉,范磊,谌文涛. 大断面矩形掘进机土压平衡控制技术探究. 建筑机械化. 2020(10): 41-45 .
    26. 程鹏,高毅,于少辉,李洋. 结构分割转换工法结构体系安全性分析. 隧道建设(中英文). 2019(03): 435-443 .
    27. 苏明浩,高毅,程鹏. 关于结构分割转换工法不同分割方式的探讨. 隧道建设(中英文). 2019(03): 444-450 .
    28. 贺善宁,豆小天,赵李勇,崔现慧,王晋波,宝青峰. 浅埋矩形顶管群密贴施工的顶推力分析研究. 隧道建设(中英文). 2019(03): 383-390 .
    29. 高毅,冯超元,程鹏. 结构分割转换工法在地下空间开发中的应用及设想. 隧道建设(中英文). 2019(03): 398-406 .
    30. 豆小天,王贺昆,曹伟明,王晋波,赵李勇,冉敬鹏. 浅埋矩形顶管整体背土效应的原因分析与处理措施. 隧道建设(中英文). 2019(03): 473-479 .
    31. 李洋,高毅,于少辉,程鹏,罗雨田. 结构分割转换工法在地下车库建设中的应用研究. 隧道建设(中英文). 2019(03): 488-495 .
    32. 高毅,于少辉,李洋,程鹏,罗雨田,冯超元. 大型地下空间的结构分割转换工法研究. 隧道建设(中英文). 2019(03): 480-487 .
    33. 李鹏,李洋,高毅,于少辉,李应飞. 基于“CC工法”的顶管隧道施工地表变形规律分析与研究. 隧道建设(中英文). 2019(11): 1838-1847 .
    34. 申洋,穆保岗. 矩形顶管施工对邻近基桩的附加荷载分析. 地下空间与工程学报. 2018(S2): 781-787+820 .
    35. 苏明浩,程鹏,高毅,于少辉,李洋. 基于CC工法建造的地下结构受力分析. 隧道建设(中英文). 2018(S2): 136-143 .
    36. 李永平,白静. 输电隧道浅埋矩形顶管在砂类土下的数值模拟分析. 内蒙古电力技术. 2018(06): 86-89 .

    Other cited types(9)

Catalog

    Article views (649) PDF downloads (366) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return