• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Hai-jun, TANG Lei, REN Xu-hua, ZHONG Ling-wei, SI Fu-an, HSIEH Ariel. Rock deformation memory effect: applications, experiments and theories[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1571-1583. DOI: 10.11779/CJGE201809002
Citation: WANG Hai-jun, TANG Lei, REN Xu-hua, ZHONG Ling-wei, SI Fu-an, HSIEH Ariel. Rock deformation memory effect: applications, experiments and theories[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1571-1583. DOI: 10.11779/CJGE201809002

Rock deformation memory effect: applications, experiments and theories

More Information
  • Received Date: June 12, 2017
  • Published Date: September 24, 2018
  • Based on the rock deformation memory effect (DME), the deformation rate analysis (DRA) method is a new method for determining the magnitudes and orientation of the in-situ stress. The DME & DRA method has an inherent advantage over the traditional in-situ stress determination methods. A significant number of successful experiments have been done in many countries. But in China, the DME & DRA method has not been explored and used by now. At the same time, the lack of the experimental and theoretical researches on the rock deformation memory prevents the improvements of the DME & DRA method. A review of application, experimental and theoretical researches on rock DME is given. For the experiments, 7 topics include: (1) features of DRA curve, (2) memory fading, (3) artificial memory and in-situ stress memory, (4) duration of loading application, (5) preload times, (6) stress level memorized by DME, (7) memory under triaxial stress state. Two kinds of mechanisms and the corresponding theoretical models are discussed with their strengths and weakness analyzed. Finally, the necessity and the directions for the future researches are outlined.
  • [1]
    FAIRHURST C.Stress estimation in rock: a brief history and review[J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(7/8): 957-973.
    [2]
    HUDSON J A, CORNET F H, CHRISTIANSSON R.ISRM suggested methods for rock stress estimation part 1: strategy for rock stress estimation[J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(7/8): 991-998.
    [3]
    蔡美峰, 王双红. 地应力状态与围岩性质的关系研究[J]. 中国矿业, 1997(6): 38-41.
    (CAI Mei-feng, WANG Shang-hong.Relation between ground stress behaviour and propertities of surrounding rock[J]. China Mining Magazine, 1997(6): 38-41. (in Chinese))
    [4]
    谢和平. “深部岩体力学与开采理论”研究构想与预期成果展望[J]. 工程与科学技术, 2017(2): 1-16.
    (XIE He-ping.Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Science, 2017(2): 1-16. (in Chinese))
    [5]
    郭建春, 王兴文, 曾凡辉. 异常高应力储层改造理论与技术[M]. 北京: 科学出版社, 2015.
    (GUO Jian-chun, WANG Xing-wen, ZENG Fan-hui.Stimulation theories and technologies in abnormal high stress reservoir[M]. Beijing: Science Press, 2015. (in Chinese))
    [6]
    DIGHT P.Stress states in open pits[C]// Keynote Lecture-Slope Stability in Mining and Civil Engineering. Vancouver, 2011.
    [7]
    葛修润, 侯明勋. 三维地应力BWSRM测量新方法及其测井机器人在重大工程中的应用[J]. 岩石力学与工程学报, 2011, 30(11): 2161-2180.
    (GE Xiu-run, HOU Ming-xun.A new 3D in-situ rock stress measuring method: borehole wall stress relief method (BWSRM) and development of geostress measuring instrument based on BWSRM and its primary applications to engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2161-2180. (in Chinese))
    [8]
    张社荣, 顾岩, 张宗亮. 超大型地下洞室围岩锚杆支护方式的优化设计[J]. 水力发电学报, 2007, 26(5): 47-52.
    (ZHANG She-rong, GU Yan, ZHANG Zong-liang.The optimized design of rockbolts supporting the large-scale underground cavities[J]. Journal of Hydroelectric Engineering, 2007, 26(5): 47-52. (in Chinese))
    [9]
    HEAL D.Observations and analysis of incidence of rockburst damage in underground mines[D]. Perth: The University of Western Australia, 2010.
    [10]
    段东, 唐春安, 李连崇, 等. 煤和瓦斯突出过程中地应力作用机理[J]. 东北大学学报自然科学版, 2009, 30(9): 1326-1329.
    (DUAN Dong, TANG Chun-an, LI Lian-chong, et al.Study on the mechanism of ground stress in coal-gas outburst[J]. Journal of Northeastern Univeristy (Natural Science), 2009, 30(9): 1326-1329. (in Chinese))
    [11]
    LJUNGGREN C, CHANG Y, JANSON T, et al.An overview of rock stress measurement methods[J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(7/8): 975-989.
    [12]
    AMADEI B, STEPHANSSON O.Rock stress and its measurement[J]. Engineering Geology, 1986, 49(1): 81-82.
    [13]
    蔡美峰. 地应力测量原理和技术[M]. 北京: 科学出版社, 1995.
    (CAI Mei-feng.Principles and techniques of in-situ stress measurement[M]. Beijing: Science Press, 1995. (in Chinese))
    [14]
    SJÖBERG J, CHRISTIANSSON R, HUDSON J A. ISRM Suggested Methods for rock stress estimation part 2: overcoring methods[J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(7): 999-1010.
    [15]
    HAIMSON B C, CORNET F H.ISRM suggested methods for rock stress estimation part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(7/8): 1011-1020.
    [16]
    HUNT S P, MEYERS A G, LOUCHNIKOV V.Modelling the Kaiser effect and deformation rate analysis in sandstone using the discrete element method[J]. Computers & Geotechnics, 2003, 30(7): 611-621.
    [17]
    侯明勋, 葛修润, 王水林. 水力压裂法地应力测量中的几个问题[J]. 岩土力学, 2003, 24(5): 840-844.
    (HOU Ming-xun, GE Xiu-run, WANG Shui-lin.Discussion on application of hydraulic fracturing method to geostress measurement[J]. Rock and Soil Mechanics, 2003, 24(5): 840-844. (in Chinese))
    [18]
    YAMAMOTO K, KUWAHARA Y, KATO N, et al.Deformation rate analysis: a new method for in situ stress estimation from inelastic deformation of rock samples under uni-axial compression[J]. Science Reports of the Tohoku University Fifth, 1990, 33(2): 34-34.
    [19]
    DIGHT P, DYSKIN A V.Accounting for the effect of rock mass anisotropy in stress measurements[C]// Deep Mining 07. Proc 4th International Seminar on Deep and High Stress Mining. Nedlands, Western Australia, 2007: 415-425.
    [20]
    DIGHT P, DYSKIN A.On the determination of rock anisotropy for stress measurements[C]// Proceedings of the First Southern Hemisphere International Rock Mechanics Symposium. Perth, 2008: 575-585.
    [21]
    葛伟凤, 张飞, 陈勉, 等. 盐膏岩DRA-Kaiser地应力测试方法初探[J]. 岩石力学与工程学报, 2015(增刊1): 3138-3142.
    (GE Wei feng, ZHANG Fei, CHEN Mian, et al. Research on Geotress Measurement Using DRA-KAISER Method in Salt-Gypsum Formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015(S1): 3138-3142. (in Chinese))
    [22]
    石凯, 梅甫定, 程明胜, 等. 循环加载高应力对大理岩Kaiser效应影响的实验研究[J]. 岩石力学与工程学报, 2017, 36(12): 2906-2916.
    (SHI Kai, MEI Fu-ding, CHENG Ming-sheng, et al.Experimental study on the effect of high stress of cyclic loading on Kaiser effectin marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2906-2916. (in Chinese))
    [23]
    王海军, 任旭华, 陶冉冉, 等. 基于摩擦滑动的低应力区岩石变形记忆性机理[J]. 中南大学学报(自然科学版), 2012, 43(11): 4464-4471.
    (WANG Hai-jun, REN Xun-hua, TAO Ran-ran, et al.Mechanism of rock deformation memory effect in low stress region based on frictional sliding[J]. Journal of Central South University (Science and Technology), 2012, 43(11): 4464-4471. (in Chinese))
    [24]
    王海军, 汤雷, 任旭华, 等. 低应力区岩石变形记忆效应形成机制及失忆性[J]. 岩土力学, 2014, 35(4): 1007-1014.
    (WANG Hai-jun, TANG Lei, REN Xu-hua, et al.Mechanism of rock deformation memory effect in low stress region and its memory fading[J]. Rock and Soil Mechanics, 2014, 35(4): 1007-1014. (in Chinese))
    [25]
    谢强, 邱鹏, 余贤斌. 利用声发射法和变形率变化法联合测定地应力[J]. 煤炭学报, 2010, 35(4): 559-564.
    (XIE Qiang, QIU Peng, YU Xian-bin.Initial-stress measurements with AE and DRA combined technique[J]. Journal of China Coal Society, 2010, 35(4): 559-564. (in Chinese))
    [26]
    YAMSHCHIKOV V S, SHKURATNIK V L, LAVROV A V.Memory effects in rocks (review)[J]. Journal of Mining Science, 1994, 30(5): 463-473.
    [27]
    VINNIKOV V A, SHKURATNIK V L.Theoretical model for the thermal emission memory effect in rocks[J]. Journal of Applied Mechanics & Technical Physics, 2008, 49(2): 301-305.
    [28]
    ZOGALA B, ZUBEREK M, GOROSKIEWICZ A.Acoustic emission in Carboniferous sandstone and mudstone samples subjected to cyclic heating[J]. Mining-Induced Seismicity, 1992, 89(3).
    [29]
    REED L D, MCDOWELL G M.A fracto-emission memory effect and subharmonic vibrations in rock samples stressed at sonic frequencies[J]. Rock Mechanics and Rock Engineering, 1994, 27(4): 253-261.
    [30]
    SHKURATNIK V L, LAVROV A V.A theoretical model of the electromagnetic emission effect of rock memory[J]. Journal of Applied Mechanics & Technical Physics, 1996, 37(6): 913-916.
    [31]
    JONASON K, VINCENT E, HAMMANN J, et al.Memory and chaos effects in spin glasses[J]. Physical Review Letters, 1998, 81(15): 3243-3246.
    [32]
    FUJII N, HAMANO Y.Anisotropic changes in resistivity and velocity during rock deformation[J]. High-Pressure Research, 1977: 53-63.
    [33]
    LIN H, WU J, LEE D.Evaluating the pre-stress of Mu-Shan sandstone using acoustic emission and deformation rate analysis[M]// London: In-situ Rock Stress, 2006: 215-222.
    [34]
    DIGHT P.Determination of in-situ stress from oriented core[M]. London: In-situ Rock Stress, 2006: 167-176.
    [35]
    SATO N, YABE Y, YAMAMOTO K, et al.In situ stresses near the Nojima fault estimated by deformation rate analysis[J]. Journal of the Seismological Society of Japan, 2003, 56: 157-169.
    [36]
    SETO M, NAG D K, VUTUKURI V S.In-situ rock stress measurement from rock cores using the acoustic emission method and deformation rate analysis[J]. Geotechnical and Geological Engineering, 1999, 17(3): 241-266.
    [37]
    UTAGAWA M, SETO M, KATSUYAMA K.Estimation of initial stress by deformation rate analysis (DRA)[J]. International Journal of Rock Mechanics & Mining Sciences, 1997, 34(3/4): 501.
    [38]
    YAMAMOTO K.A theory of rock core-based methods for in-situ stress measurement[J]. Earth, Planets and Space, 2009, 61(10): 1143-1161.
    [39]
    YAMAMOTO H.An experimental study on stress memory of rocks and its application to in situ stress estimation[D]. Miyagi-ken: Tohoku Univ, 1991.
    [40]
    DIGHT P, ARIEL H.Insitu stress measurement report——DGDD 117 & DGDD 047[R]. Perth: The University of Western Australia, 2010.
    [41]
    DIGHT P, ARIEL H.Insitu stress measurement report——1037A[R]. Perth: The University of Western Australia, 2010.
    [42]
    DIGHT P, ARIEL H.Preliminary insitu stress measurement report[R]. Perth: The University of Western Australia, 2010.
    [43]
    DIGHT P, ARIEL H.Insitu stress measurement report——EH753[R]. Perth: The University of Western Australia, 2011.
    [44]
    HULLS L.George fisher mine 17 level stress measurement results[R]. Mlebourne: Mining One Pty Ltd, 2014.
    [45]
    YAMAMOTO K, YABE Y.Stresses at sites close to the Nojima fault measured from core samples[J]. Island Arc, 2001, 10(3/4): 266-281.
    [46]
    YAMAMOTO K, YABE Y, YAMAMOTO H.Relation of in-situ stress field to seismic activity as inferred from the stresses measured on core samples[M]// Rotterdam: Balkema, 375-380.
    [47]
    YAMAMOTO K, YAMAMOTO H, KATO N, et al.Deformation rate analysis for in situ stress measurement[M]. Clausthal-Zellerfeld: Trans Tech Publications. 243-255.
    [48]
    TSUKAHARA H, IKEDA R.Hydraulic fracturing stress measurements and in-situ stress field in the Kanto-Tokai area, Japan[J]. Tectonophysics, 2012, 135(4): 329-345.
    [49]
    MCMAHON A.Results of insitu stress tests appendix g in argyle diamond mine-underground geotechnical investigations[R]. Perth: Report on Geotechnical Observations and Measurement, 1996.
    [50]
    BOGACZ V, DIGHT P.Extensional tectonic deformation and tectonic genesis model of the deposit[R]. Perth: BFPO Consultants Report, 2002.
    [51]
    YABE Y, SONG S R, WANG C Y.In-situ stress at the northern portion of the Chelungpu fault, Taiwan, estimated on boring cores recovered from a 2-km-deep hole of TCDP[J]. Earth, Planets and Space, 2008, 60(8): 809-819.
    [52]
    YABE Y, YAMAMOTO K, SATO N, et al.Comparison of stress state around the Atera fault, central Japan, estimated using boring core samples and by improved hydraulic fracture tests[J]. Earth, Planets and Space, 2010, 62(3): 257-268.
    [53]
    YABE Y, OMURA K.In-situ stress at a site close proximity to the Gofukuji Fault, central Japan, measured using drilling cores[J]. Island Arc, 2011, 20(2): 160-173.
    [54]
    SETO M, SOMA N, MAEDA N, et al.Methodology and case studies of stress measurement by the AE and DRA methods using rock core[J]. Journal of Mmij, 2001, 117: 829-835.
    [55]
    SETO M, VILLAESCUSA E.In situ stress determination by acoustic emission techniques from mcarthur river mine cores[C]// Proceedings 8th Australia New Zealand Conference on Geomechanics. Hobart, 1999: 929-934.
    [56]
    SETO M, VILLAESCUSA E, UTAGAWA M, et al.In Situ Stress Evaluation from Rock Cores Using AE Method and DRA[J]. Shigen-to-Sozai, 1998, 114(12): 845-855.
    [57]
    PARK P, PARK N, HONG C, et al.The influence of delay time and confining pressure on in-situ stress measurement using AE and DRA[C]// Proceedings of the 38th US Symposium on Rock Mechanics. Washington, 2001: 1281-1284.
    [58]
    VILLAESCUSA E, SETO M, BAIRD G.Stress measurements from oriented core[J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(5): 603-615.
    [59]
    藤井義明, 石島洋二, 堀場夏峰, 等. あるV字谷におけるシーティングの力学的背景に関する研究[J]. 資源と素材, 1998, 114(12): 869-874.
    (FUJII Y, ISHIJIMA Y, HORIBA N, et al.A study on mechanical backgrounds of sheeting joints in a V-shaped valley[J]. Shigen-to-Sozai, 1998, 114(12): 869-874. (in Japanese))
    [60]
    松本裕之, 後藤龍彦, 出口剛太. 太平洋炭鉱における原位置地圧計測結果と変形率変化法との比較[J]. 資源と素材, 1996, 112(11): 796-799.
    (MATSUMOTO H, GOTO Tatsuhiko.Comperison between results of in-site stress measurements and DRA. method in taiheiyo coal mine[J]. Shigen-to-Sozai, 1996, 112(11): 796-799. (in Japanese))
    [61]
    HOLMES C.Deformation rate analysis and “stress memory” effect in rock[D]. Perth: The University of Western Australia, 2004.
    [62]
    CHANG C F.Investigating the laboratory experiments to estimate pre-stress on black schist[D]. Tainan City: National Cheng Kung University, 2007.
    [63]
    WANG H J, DYSKIN A V, HSIEH A, et al.The mechanism of the deformation memory effect and the deformation rate analysis in layered rock in the low stress region[J]. Computers & Geotechnics, 2012, 44: 83-92.
    [64]
    WU J H, JAN S C.Experimental validation of core-based pre-stress evaluations in rock: a case study of Changchikeng sandstone in the Tseng-wen reservoir transbasin water tunnel[J]. Bulletin of Engineering Geology and the Environment, 2010, 69(4): 549-559.
    [65]
    CHAN S C.Investigating the laboratory experiments to estimate pre-stress on changchikeng sandstone[D]. Tainan City: Cheng Kung University, 2008.
    [66]
    英樹島田, 史樹後藤, 政宏瀬戸, 等. DRA法による地圧測定の適用性に関する基礎的研究[J]. 資源と素材, 2006, 117(3): 202-208.
    (SHIMADA H, GOTO F, SETO M, et al.Fundamental study on applicability on in-situ stress using DRA methods[J]. Shigen-to-Sozai, 2006, 117(3): 202-208. (in Japanese))
    [67]
    HUNT S, MEYERS A, LOUCHNIKOV V, et al.Use of the DRA technique, porosimetry and numerical modelling for estimating the maximum in-situ stress in rock from core[J]. South African Institute of Mining & Metallurgy, 2003, 37(1): 17-22.
    [68]
    II'INOV M D. Development of a method of quantitative evaluation of the stress state of rocks in situ from indices of the mechanical properities of an extracted core[D]. VINIMI: Leningrad, 1985.
    [69]
    MAKASI M, FUJII Y.Effects of strain rate and temperature on tangent modulus method[C]// Proceedings of Korean Rock Mecahanics Symposium. Gwangju, 2008: 279-285.
    [70]
    MAKASI M, FUJII Y.Effects of strain rate and temperature on bending point stress in tangent modulus method[C]// The 3rd International Workshop and Conference on Earth Resources Technology. Sapporo, 2009: 116-123.
    [71]
    PROSKURYUAKOV N M, KARTASHOV Y M, II'INOV M D. Memory effects of rocks under various types of their loading[C]// Memory Effects in Rocks. Moscow, 1986.
    [72]
    KAISER J.Information and conclusions from the measurement of noises in tensile stressing of metallic materials[J]. Arch Eisenhuttenwesen, 1953(24): 43-45.
    [73]
    TANG C A, CHEN Z H, XU X H, et al.A theoretical model for kaiser effect in rock[J]. Pure and Applied Geophysics, 1997, 150(2): 203-215.
    [74]
    樊运晓. 损伤:Kaiser效应记忆机理的探讨[J]. 岩石力学与工程学报, 2000, 19(2): 254-258.
    (FAN Yun-xiao.Damage, the mechanism of Kaiser effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(2): 254-258. (in Chinese))
    [75]
    TAMAKI K, YAMAMOTO K, FURUTA T, et al.An experiment of in-situ stress estimation on basaltic rock core samples from hole 758a, ninetyeast ridge, Indian Ocean[J]. Journal of Infectious Diseases, 1991, 208(3): 425-432.
    [76]
    TAMAKI K, YAMAMOTO K.Estimating in situ stress field from basaltic rock core samples of Hole 794C, Yamato Basin, Japan Sea[C]// Proceedings of the Ocean Drilling Program, Scientific Results. Texas, 1992: 1047-1059.
    [77]
    STEVENS J L, HOLCOMB D J.A Theoretical investigation of the sliding crack model of dilatancy[J]. Journal of Geophysical Research, 1980, 85(B12): 7091-7100.
    [78]
    KUWAHARA Y, KYAMAMOTO I, HIRASAWA T.An experimental and theoretical study of inelastic deformation of brittle rocks under cyclic uniaxial loading[J]. Tohoku Geophys J, 1990, 33(1):1-21.
    [79]
    REN X H, WANG H J.Numerical study of AE and DRA methods in sandstone and granite in orthogonal loading directions[J]. Water Science and Engineering, 2012, 5(1): 93-104.
    [80]
    Itasca Consulting Group.PFC2D particle flow code in 2 Dimensions[M]. Minnesota: Minneapolis, 1999.
    [81]
    POTYONDY D O, CUNDALL P A.A bonded-particle model for rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8): 1329-1364.
    [82]
    WAWERSIK W R, FAIRHURST C.A study of brittle rock fracture in laboratory compression experiments[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1970, 7(5): 561-564.
    [83]
    JAEGER J C.Brittle fracture of rocks[C]// Proceeding of the 8th Symposium on Rock Mechanics. Baltimore: Port City Press, 1967: 3-57.
    [84]
    HUDSON J, HARRISON J, POPESCU M.Engineering rock mechanics: an introduction to the principles[J]. Applied Mechanics Reviews, 1997, 55(2): 72.
    [85]
    EBERHARDT E, STEAD D, STIMPSON B, et al.Identifying crack initiation and propagation thresholds in brittle roc[J]. Canadian Geotechnical Journal, 1998, 35(2): 222-233.
    [86]
    BIENIAWSKI Z T.Mechanism of brittle fracture of rock part II: experimental studies[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1967, 4(4): 407-423.
    [87]
    BRACE W F, PAULDING B W, SCHOLZ C.Dilatancy in the fracture of crystalline rocks[J]. Journal of Geophysical Research, 1966, 71(16): 3939-3953.
    [88]
    MARTIN D C.The strength of massive Lac du Bonnet granite around underground openings[D]. Winnipeg: University of Manitoba, 1993.
    [89]
    CAI M, KAISER P K, TASAKA Y, et al.Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(5): 833-847.
    [90]
    DIEDERICHS M S, KAISER P K, EBERHARDT E.Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(5): 785-812.
    [91]
    YUAN S C, HARRISON J P.An empirical dilatancy index for the dilatant deformation of rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(4): 679-686.
    [92]
    ALKAN H, CINAR Y, PUSCH G.Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(1): 108-119.
    [93]
    DAVID E C, BRANTUT N, SCHUBNEL A, et al.Sliding crack model for nonlinearity and hysteresis in the uniaxial stress-strain curve of rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 52(6): 9-17.
    [94]
    EBERHARDT E.Brittle rock fracture and progressive damage in uniaxial compression[J]. Human Factors, 1998, 8(3): 239-243.
    [95]
    LAVROV A.The Kaiser effect in rocks: principles and stress estimation techniques[J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(2): 151-171.
    [96]
    BASISTA M, GROSS D.The sliding crack model of brittle deformation: an internal variable approach[J]. International Journal of Solids & Structures, 1998, 35(5/6): 487-509.
    [97]
    MORI T, MURA T.Blocking effect of inclusions on grain boundary sliding; spherical grain approximation[J]. Journal of the Mechanics & Physics of Solids, 1987, 35(5): 631-641.
    [98]
    王海军. 基于黏弹性摩擦滑动的岩石变形记忆效应形成机理研究[D]. 南京: 河海大学, 2012.
    (WANG Hai-jun.Mechanism of rock deformation memory effect based on viscoelastic frictional sliding[D]. Nanjing: Hohai University.(in Chinese))
  • Cited by

    Periodical cited type(18)

    1. 周顺华,张克平,张小会,张权,裴政川,赵旭伟. 内钢圈加固盾构隧道黏结界面力学性能. 同济大学学报(自然科学版). 2025(02): 177-186 .
    2. 刘洋洋,魏纲,木志远,徐天宝,项鹏飞. 高强砂浆钢筋网加固掉块后盾构管片研究. 低温建筑技术. 2025(02): 56-61 .
    3. 方腾卫,杨孟,张建伟,陈磊,曹克磊. TBM引水隧洞组合结构联合承载特性及荷载分担率研究. 广东水利水电. 2024(01): 31-38 .
    4. 胡梦豪,石钰锋,蒋亚龙,黄展军,张荣锋,顾大均. 超、卸载作用下考虑接头影响的盾构管片承载性能研究. 北京交通大学学报. 2024(01): 20-31 .
    5. 张建伟,刘贺,曹克磊,黄锦林,王勇. TBM有压输水隧洞内张钢圈-管片-围岩组合结构联合承载力学特性分析. 岩土力学. 2024(04): 1154-1169+1180 .
    6. 周思剑,张迪,周建,李瑛,龚晓南. 基于TJS工法的盾构隧道运营变形控制. 浙江大学学报(工学版). 2024(07): 1427-1435 .
    7. 谢家冲,黄昕,金国龙,张子新. 内外水力交互下浅埋带压盾构隧道水土压力计算模型. 岩土工程学报. 2024(08): 1685-1694 . 本站查看
    8. 赵密,张凤琳,黄景琦,赵旭,曹胜涛,杜修力,谢伟杰. 正弯矩循环加载下粘钢加固管片接头动力特性数值模拟研究. 北京工业大学学报. 2024(11): 1326-1338 .
    9. 彭武. 基于钢板加固的盾构隧道管片衬砌承载性能数值模拟研究. 交通节能与环保. 2024(06): 254-261 .
    10. 杨绍毅,封坤,沐海星,薛皓匀,郭文琦,曹翔鹏. 穿越土-岩复合地层的盾构隧道纵向地震响应研究. 土木工程学报. 2024(S2): 133-141 .
    11. 魏义山,钟小春,刘浩源,王建军,张文斌,刘双全. 盾构近距离下穿工况下既有隧道钢环预加固弯曲刚度研究. 土木工程学报. 2024(S2): 120-126 .
    12. 王钦,魏纲,章丽莎,杨仲轩. 旁侧基坑开挖卸载工况下槽钢加固盾构管片的加固效果研究. 隧道建设(中英文). 2023(02): 285-295 .
    13. 杨成. 运营盾构隧道加固后衬砌-钢环复合体系力学性能研究. 广东土木与建筑. 2023(08): 89-92 .
    14. 王儒,翟五洲,倪海波,黄宏伟. 盾构隧道机械法联络通道破洞施工中管片衬砌洞门结构力学响应的数值模拟研究. 隧道建设(中英文). 2023(S1): 178-188 .
    15. 刘学增,李振,杨芝璐. 盾构隧道钢板加固黏结面作用机制与参数影响分析. 中南大学学报(自然科学版). 2023(10): 3987-3999 .
    16. 石钰锋,胡梦豪,张涛,黄大维,黄展军,陈焕然. 强风化软岩地层盾构隧道荷载及受力特性分析. 隧道建设(中英文). 2023(S2): 91-99 .
    17. 温彦华,王旭. 地铁盾构隧道内张钢圈加固施工技术研究. 轨道交通装备与技术. 2023(S2): 42-45 .
    18. 于阳,孙雅珍,林志军,王金昌,叶友林. 侧向基坑开挖对盾构管片受力及裂损影响. 辽宁工程技术大学学报(自然科学版). 2022(04): 337-344 .

    Other cited types(15)

Catalog

    Article views PDF downloads Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return