Shaking table tests on landfills and identification of progressive damage energy
-
摘要: 为了探讨地震作用下含导排衬垫层填埋场的损伤变形特性,开展了含导排衬垫层的填埋场边坡的大型振动台试验,并根据填埋场各处动态响应规律,提出了一种基于希尔伯特-黄(HHT)和边际谱的能量识别方法。该方法能够用于识别填埋场整体损伤和局部损伤,并根据实测位移值对该方法的有效性进行了讨论。试验结果表明,在输入波峰值加速度为0.3g时,坡脚正位移峰值及坡中负位移峰值突变;希尔波特谱峰值(PSHEA)随着高度的增加而增加,填埋场固废层希尔伯特能量大于衬垫及导排系统;输入波峰值加速度为0.3g及0.4g时,导排衬垫界处抗剪强度低面及中老固废交界震陷,边际谱峰值(PMSA)发生突变,能量传递异常。填埋场在地震作用下的损伤主要分为3个阶段:0.1g~0.2g未发生破坏阶段,0.3g~0.4g局部损伤阶段,破坏由导排及衬垫系统开始,0.5g整体破坏阶段填埋场边坡进入塑性变化;输入波幅值达到0.3g时衬垫导排层先产生滑移,峰值时刻固废交界处发生破坏。研究成果可为填埋场在地震作用下的损伤预测及填埋场抗震减灾技术设计提供参考依据。Abstract: In order to investigate the damage deformation characteristics of landfills containing drainage layer and liners under earthquake, a large shaking table test on a landfill slope containing drainage layer and liners is carried out, and an energy identification method based on the Hilbert-Huang (HHT) and marginal spectrum is proposed based on the dynamic response law of acceleration at each part of the landfill. The method can be used to identify the overall damage and local damage of the landfill, and the effectiveness of the method is discussed based on the measured displacement. The test results show that at the peak seismic intensity of 0.3g, the peak positive displacement at the foot of the slope and the peak negative displacement in the slope change abruptly. The PSHEA increases with height, and the Hilbert energy of municipal solid waste layer is larger than that of the liners and the drainage layer. At the peak acceleration of the input waves of 0.3g and 0.4g, the shear strength of the drainage liner is low, the interface of partially and fully degraded municipal solid waste is trapped, the PMSA changes abruptly, and the energy transfer is abnormal. The damage of the landfill under earthquake is mainly divided into three stages: 0.1g-0.2g without damage stage; 0.3g-0.4g local damage stage, when the damage starts from the drainage layer and liner system at the inner slope corner; and 0.5g overall damage stage of landfill slope into plastic change. Under 0.3g Taft waves, the drainage layer and liners slip first, and the interface of partially and fully degraded municipal solid waste is damaged at the peak moment. The research results can provide a reference basis for the prediction of deformation damage of landfills under earthquake and the design of their seismic mitigation technology.
-
Keywords:
- landfill /
- shaking table test /
- energy /
- Hilbert energy /
- marginal spectrum /
- sliding average method /
- damage
-
-
表 1 关键物理量及其相似比
Table 1 Key physical quantities and their similitude coefficients
属性 物理量 量纲分析 相似比 基本控制量 加速度 1 尺寸 20 密度 1 推导控制量 弹性模量 20 泊松比 无量纲 1 黏聚力 20 内摩擦角 无量纲 1 应力 20 应变 无量纲 1 时间 4.47 位移 20 速度 4.47 阻尼比 无量纲 1 表 2 固废相似材料物理参数
Table 2 Physical parameters of materials for prototype and model slopes
材料 重度/(kN·m-3) 含水率/% 黏聚力/kPa 内摩擦角/(°) 西安江村沟填埋场固废 7~17.5 24.1~66.1 7.91~27.68 13.36~28.34 人工固废
(中龄期)9.3 45 1.7 27.1 人工固废
(老龄期)13.2 35 1.5 30.2 表 3 试验加载方案
Table 3 Loading programs
编号 加载波形 激振方向 峰值加速度/g 次数 持时/s 间隔/s 1 Taft波 x 0.1 4 6.7 1 2 Taft波 x 0.2 4 6.7 1 3 Taft波 x 0.3 4 6.7 1 4 Taft波 x 0.4 4 6.7 1 5 Taft波 x 0.5 4 6.7 1 6 破坏试验 -
[1] 邓学晶, 孔宪京, 邹德高. 城市垃圾填埋场地震稳定性的拟静力分析方法[J]. 岩土工程学报, 2010, 32(8): 1303-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201008030.htm DENG Xuejing, KONG Xianjing, ZOU Degao. Pseudo-static analysis for evaluation of earthquake stability of landfills[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1303-1308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201008030.htm
[2] 张振营, 郭文强, 张宇翔, 等. MBT垃圾的三轴试验结果[J]. 岩土工程学报, 2019, 41(7): 1345-1353. doi: 10.11779/CJGE201907020 ZHANG Zhenying, GUO Wenqiang, ZHANG Yuxiang, et al. Shear strength behavior of mechanically-biologically treated waste in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1345-1353. (in Chinese) doi: 10.11779/CJGE201907020
[3] 邓学晶, 孔宪京, 邹德高. 复杂荷载作用下填埋场HDPE土工膜受拉计算[J]. 岩土工程学报, 2007, 29(3): 447-451. http://cge.nhri.cn/cn/article/id/12349 DENG Xuejing, KONG Xianjing, ZOU Degao. Calculation of tension in HDPE geotechnical membrane under complicated loads[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 447-451. (in Chinese) http://cge.nhri.cn/cn/article/id/12349
[4] 冯世进, 沈阳, 郑奇腾, 等. 基于界面物态演变规律的衬垫界面动力模型[J]. 岩土工程学报, 2019, 41(11): 2018-2025. doi: 10.11779/CJGE201911006 FENG Shijin, SHEN Yang, ZHENG Qiteng, et al. Dynamic interface model based on physical state evolution of liner interface[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2018-2025. (in Chinese) doi: 10.11779/CJGE201911006
[5] 朱斌, 陈云敏, 柯瀚. 扩建城市垃圾填埋场的地震稳定性分析[J]. 岩土力学, 2008, 29(6): 1483-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200806010.htm ZHU Bin, CHEN Yunmin, KE Han. Seismic stability analysis of extended municipal solid waste landfills[J]. Rock and Soil Mechanics, 2008, 29(6): 1483-1488. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200806010.htm
[6] 舒实, 施建勇. 气压和温度变化共同作用下垃圾填埋场边坡稳定性研究[J]. 岩土工程学报, 2022, 44(1): 82-89. doi: 10.11779/CJGE202201007 SHU Shi, SHI Jianyong. Slope stability of municipal solid waste landfills under combined effects of gas pressure and temperature changes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 82-89. (in Chinese) doi: 10.11779/CJGE202201007
[7] CHEN Y M, GAO D, ZHU B, et al. Seismic stability and permanent displacement of landfill along liners[J]. Science in China (Series E, Technological Sciences), 2008, 51(4): 407-423. doi: 10.1007/s11431-008-0031-y
[8] 李俊超. 高水位填埋场静力与地震稳定性超重力离心模型试验研究[D]. 杭州: 浙江大学, 2018. LI Junchao. Studies on Static and Seismic Stability of Landfills with High Water Level by Centrifugal Model Tests[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
[9] FENG S J, CHANG J Y, CHEN H X. Seismic analysis of landfill considering the effect of GM-GCL interface within liner[J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 152-163. doi: 10.1016/j.soildyn.2018.01.025
[10] 孔宪京, 邓学晶. 城市垃圾填埋场地震变形机理的振动台模型试验研究[J]. 土木工程学报, 2008, 41(5): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200805016.htm KONG Xianjing, DENG Xuejing. Shaking table test on the mechanism of seismically induced deformation of municipal waste landfills[J]. China Civil Engineering Journal, 2008, 41(5): 65-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200805016.htm
[11] INDRASENAN T N, GOPAL M S P, SINGH S. Centrifuge modeling of solid waste landfill systems: Part 2: centrifuge testing of model waste[J]. Geotechnical Testing Journal, 2006, 29(3): 223-229. doi: 10.1520/GTJ14314
[12] KAVAZANJIAN E Jr, GUTIERREZ A. Large scale centrifuge test of a geomembrane-lined landfill subject to waste settlement and seismic loading[J]. Waste Management, 2017, 68: 252-262. doi: 10.1016/j.wasman.2017.01.029
[13] KOKUSHO T, ISHIZAWA T, KOIZUMI K. Energy approach to seismically induced slope failure and its application to case histories[J]. Engineering Geology, 2011, 122(1/2): 115-128.
[14] KOKUSHO T. Energy-Based Newmark Method for earthquake-induced slope displacements[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 121-134. doi: 10.1016/j.soildyn.2019.02.027
[15] LEI H, WU H G, QIAN J G. Seismic failure mechanism and interaction of the cross tunnel-slope system using Hilbert-Huang transform[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2023, 131: 104820.
[16] FAN G, ZHANG L M, ZHANG J J, et al. Time-frequency analysis of instantaneous seismic safety of bedding rock slopes[J]. Soil Dynamics and Earthquake Engineering, 2017, 94: 92-101. doi: 10.1016/j.soildyn.2017.01.008
[17] SONG D Q, CHEN Z, KE Y T, et al. Seismic response analysis of a bedding rock slope based on the time-frequency joint analysis method: a case study from the middle reach of the Jinsha River, China[J]. Engineering Geology, 2020, 274: 105731. doi: 10.1016/j.enggeo.2020.105731
[18] MIRHAJI V, JAFARIAN Y, BAZIAR M H, et al. Seismic in-soil isolation of solid waste landfill using geosynthetic liners: shaking table modeling of Tehran landfill[J]. International Journal of Civil Engineering, 2019, 17(2): 205-217. doi: 10.1007/s40999-017-0232-5
[19] INDRASENAN T N, GOPAL M S P, SINGH S. Centrifuge modeling of solid waste landfill systems: Part 1: development of a model municipal solid waste[J]. Geotechnical Testing Journal, 2006, 29(3): 217-222. doi: 10.1520/GTJ12299
[20] 徐光兴, 姚令侃, 高召宁, 等. 边坡动力特性与动力响应的大型振动台模型试验研究[J]. 岩石力学与工程学报, 2008, 27(3): 624-632. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200803026.htm XU Guangxing, YAO Lingkan, GAO Zhaoning, et al. Large-scale shaking table model test study on dynamic characteristics and dynamic responses of slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 624-632. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200803026.htm
[21] 王济. MATLAB在振动信号处理中的应用[M]. 北京: 中国水利水电出版社, 2007. WANG Ji. Application of MATLAB in Vibration Signal Processing[M]. Beijing: China Water and Power Press, 2007. (in Chinese)
[22] HUANG N E. New method for nonlinear and nonstationary time series analysis: empirical mode decomposition and Hilbert spectral analysis[C]// SPIE Proceedings "Wavelet Applications Ⅶ". Orlando, 2000.
[23] FAN G, ZHANG J J, FU X, et al. Dynamic failure mode and energy-based identification method for a counter-bedding rock slope with weak intercalated layers[J]. Journal of Mountain Science, 2016, 13(12): 2111-2123. doi: 10.1007/s11629-015-3662-z
-
期刊类型引用(41)
1. 侯瑞彬,潘逸尘,董云瑶,付宇廷,刘蒙蒙. 2023年甘肃积石山M_S6.2地震密集观测记录的区域性差异分析. 世界地震工程. 2025(02): 12-20 . 百度学术
2. 常晁瑜,乔峰,薄景山,绽蓓蕾,谷佳沛,李昊宇,田华俊. 甘肃积石山6.2级地震诱发中川乡流滑成因初探. 防灾减灾工程学报. 2025(02): 349-356 . 百度学术
3. 王兰民,许世阳,王平,王睿,车爱兰,周燕国,吴志坚,王谦,蒲小武,柴少峰,马星宇. 2023年积石山6.2级地震诱发大规模黄土液化流滑的特征与启示. 岩土工程学报. 2024(02): 235-243 . 本站查看
4. 刘港,贾俊,张戈,洪勃,董英,裴赢,薛强,高波. 甘肃积石山地震液化型泥流特征、成因及其对黄河上游盆地地震次生灾害风险评估的启示. 西北地质. 2024(02): 220-229 . 百度学术
5. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 . 百度学术
6. 潘建磊,梁庆国,刘海生,时伟,王丽丽. 黄土液化作用及其次生灾害风险评估方法初探——以积石山M_S6.2地震为例. 地震工程学报. 2024(04): 836-845 . 百度学术
7. 袁近远,崔家伟,李兆焱,袁晓铭,张钰洋. 中国模式下砾性土液化指数评价新方法. 土木工程学报. 2024(09): 98-108 . 百度学术
8. 葛一荀,张洁,黄宏伟. 基于贝叶斯分层模型的液化侧移稳健的易损性分析方法. 同济大学学报(自然科学版). 2024(11): 1658-1669 . 百度学术
9. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 . 百度学术
10. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 . 百度学术
11. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 . 百度学术
12. 代言,邓龙胜,毛伟,范文,李培. 马兰黄土液化特性及孔压模型参数研究. 地震工程学报. 2023(02): 338-345+361 . 百度学术
13. 隆然,刘兴东. 基于致灾机理分析的公路滑坡稳定性评价及治理方案研究. 铁道勘察. 2023(02): 33-37 . 百度学术
14. 贾科敏,许成顺,杜修力,张小玲,宋佳,苏卓林. 可液化倾斜场地的侧向扩展机制分析. 岩土力学. 2023(06): 1837-1848 . 百度学术
15. 罗增文,苏卓林,贾科敏,许成顺. 地震作用下碎石桩场地侧向位移规律研究. 震灾防御技术. 2023(02): 361-368 . 百度学术
16. 王兰民,柴少峰,薄景山,王平,许世阳,李孝波,蒲小武. 黄土地震滑坡的触发类型、特征与成灾机制. 岩土工程学报. 2023(08): 1543-1554 . 本站查看
17. 李孝波,欧阳刚垒,宋霖君,吴义文,徐建元. 黄土高原地区场地设计反应谱特征周期研究. 地震工程学报. 2023(05): 1161-1170 . 百度学术
18. 柴少峰,王兰民,王平,郭海涛,夏晓雨,车高凤,王会娟. 石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究. 岩土工程学报. 2023(12): 2565-2574 . 本站查看
19. 马为功,王兰民,许世阳,李登科,柴少峰. 饱和黄土隧道围岩地震液化特征的振动台试验研究. 岩土工程学报. 2023(S2): 171-176 . 本站查看
20. 李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价. 工程科学学报. 2022(03): 440-450 . 百度学术
21. 程超,钟秀梅,刘钊钊,刘富强,江志杰,王谦,陶冬旺. 饱和黄土动态液化和静态液化机理的差异性研究. 地震工程学报. 2022(01): 136-144 . 百度学术
22. 袁近远,李天宁,王兰民,汪云龙,陈龙伟,李兆焱,袁晓铭,王永志,陈卓识,李瑞山. 砂土液化概率计算新方法. 岩土工程学报. 2022(03): 541-549 . 本站查看
23. 王谦,钟秀梅,高中南,马金莲,万秀红,杨义煊,刘岸果. 门源M6.9地震诱发地质灾害特征研究. 地震工程学报. 2022(02): 352-359 . 百度学术
24. 葛一荀,张洁,祝刘文,程小久,廖先斌,汪华安,孔明,郑文棠,王占华. 砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究. 工程地质学报. 2022(02): 507-519 . 百度学术
25. 包含,马扬帆,兰恒星,彭建兵,张科科,许江波,晏长根,孙强. 基于微结构量化的含渐变带黄土各向异性特征研究. 中国公路学报. 2022(10): 88-99 . 百度学术
26. 苏卓林,贾科敏,许成顺,豆鹏飞,张小玲. 双向地震作用下液化水平和倾斜场地-桩基-桥梁结构地震反应的差异研究. 地震科学进展. 2022(11): 505-512 . 百度学术
27. 宋洋,刘思源,王晨炟. 含水率和干湿循环对原状黄土变形特性的影响. 辽宁工程技术大学学报(自然科学版). 2021(02): 148-155 . 百度学术
28. 王玉峰,林棋文,李坤,史安文,李天话,程谦恭. 高速远程滑坡动力学研究进展. 地球科学与环境学报. 2021(01): 164-181 . 百度学术
29. 颜灵勇,李孝波,欧阳刚垒. 黄土地震滑坡形成机理研究的若干进展. 防灾科技学院学报. 2021(02): 46-53 . 百度学术
30. 马星宇,王兰民,王谦,王平,钟秀梅,蒲小武,刘富强. 饱和黄土液化流动性试验研究. 岩土工程学报. 2021(S1): 161-165 . 本站查看
31. 袁晓铭,费扬,陈龙伟,袁近远,陈同之,张思宇,王义德. 含剧烈地震动作用不同埋深砂土液化判别统一公式. 岩石力学与工程学报. 2021(10): 2101-2112 . 百度学术
32. 李旭东,王平,王丽丽,王会娟,常文斌,钱紫玲. 强震作用下坡顶建筑荷载对边坡稳定性影响研究. 地震工程学报. 2021(05): 1220-1227 . 百度学术
33. 张子东,张晓超,任鹏,崔雪婷. 非饱和黄土动力液化研究——以党家岔滑坡为例. 地震工程学报. 2021(05): 1228-1237 . 百度学术
34. 许成顺,贾科敏,杜修力,王志华,宋佳,张小玲. 液化侧向扩展场地-桩基础抗震研究综述. 防灾减灾工程学报. 2021(04): 768-791 . 百度学术
35. 马晓文,梁庆国,赵涛,周稳弟. 土动力学研究综述及思考. 世界地震工程. 2021(04): 217-230 . 百度学术
36. 许成顺,王冰,杜修力,岳冲,杨钰荣. 循环加载频率对砂土液化模式的影响试验研究. 土木工程学报. 2021(11): 109-118 . 百度学术
37. 郭海涛,许世阳,蒲小武,张晓军,马星宇. 海原地震石碑塬液化滑移地表特征形成机制探讨. 地震工程学报. 2020(05): 1159-1164 . 百度学术
38. 杨博,田文通,孙军杰,刘琨,徐舜华. 海原大地震诱发石碑塬黄土滑坡机制探讨. 地震工程学报. 2020(05): 1165-1172 . 百度学术
39. 马星宇,王兰民,钟秀梅,蒲小武,刘富强,王谦. 地震诱发石碑塬黄土地层液化滑移距离研究. 地震工程学报. 2020(06): 1674-1682 . 百度学术
40. 车福东,王涛,辛鹏,张泽林,梁昌玉,刘甲美. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例. 地质通报. 2020(12): 1981-1992 . 百度学术
41. MA Xingyu,WANG Lanmin,WANG Qian,WANG Ping,ZHONG Xiumei,PU Xiaowu,LIU Fuqiang,XU Xiaowei. Flow Characteristics of Large-Scale Liquefaction-Slip of the Loess Strata in Shibei Tableland, Guyuan City, Induced by the 1920 Haiyuan M8(1/2) Earthquake. Earthquake Research in China. 2020(04): 469-481 . 必应学术
其他类型引用(32)
-
其他相关附件