Development and performance evaluation of a soft-contact earth pressure transducer for geotechnical centrifuge modeling
-
摘要: 微型土压计是岩土离心模型试验的重要测量技术之一。为解决刚性土压计测量中拱效应、尺寸效应、厚径比等经典误差问题及提升频响速率和精度,尝试开发了一种全新软接触式微型土压计ESP-Ⅱ,介绍了其技术创新和设计方法。以两种国际代表性土压计为参考,设计开展一系列离心模型试验,对其感应精度、速率和适用性进行评价。主要结论:①逐级加载离心加速度5g~50g试验下,各深度ESP-Ⅱ和两种参考传感器测试结果与理论值的平均误差分别为5.16%,6.70%,4.85%,三者沿深度拟合K0优度系数R2均≥0.9893。②脉冲荷载试验中ESP-Ⅱ最大响应时间约7.8 ms,略优于两种参考传感器,具有良好的频响速率。③不同幅值正弦、地震等动荷载试验下,3种传感器测得土压力均呈一致增量趋势,K0约由0.43~0.45增至0.51~0.56,与既有规律认识吻合。④离心机下降卸荷过程中,ESP-Ⅱ测得时程表现良好连续性和光滑性,反映软接触式设计有利于保障土体与传感器良好接触和稳定响应。研究成果,初步证明了软接触式土压计适应于静、动力离心试验需求,具有重要价值与应用前景。Abstract: The miniature earth pressure transducer is one of the key testing tools in geotechnical centrifuge modeling. Aiming at solving the classical problems such as arching effects, size effects and thickness-diameter ratio in the measurement of rigid transducers, and improving the frequency response rate and induction accuracy, a soft-contact pressure transducer ESP-Ⅱ is developed, and its innovations and design methods are introduced. Taking two internationally representative earth pressure transducers as reference, a series of centrifugal model tests are designed and carried out to evaluate its accuracy, frequency response and applicability. The main conclusions are as follows: (1) In the static centrifugal acceleration tests spinning up from 5g to 50g, the difference between the theoretical values and the test results of ESP-Ⅱ and the two reference transducers at each depth is small, and the average deviations are 5.16%, 6.70% and 4.85%, respectively. The coefficient R2 of the three curves K0 fitted along the depth is≥0.9893. (2) In the pulse load tests, the maximum response time of ESP-Ⅱ is about 7.8 ms, which is slightly better than that of the two reference transducers and has a satisfactory frequency response. (3) In the dynamic load tests of sine and seismic with different amplitudes, the incremental trend of earth pressure measured by the three transducers is basically consistent. The variation range of K0 increases from 0.43~0.45 before the seismic to 0.51~0.56 after the seismic, which is consistent with the existing theory. (4) At the decelerating stage of the centrifuge, the good continuity and smoothness of the time history measured by the ESP-Ⅱ, which reflects the soft-contact design, is conducive to ensuring good contact and stable response between the soil and the transducer. The research results have preliminarily proved that the developed soft-contact transducer ESP-Ⅱ satisfies the requirements of static and dynamic centrifugal tests, with significant application value and immense potential.
-
-
表 1 ESP-Ⅱ与国际通用土压计的主要设计参数及材料
Table 1 Main design parameters and materials of three types of earth pressure transducers
型号 量程/kPa 感应元类型 壳体/mm 线缆/mm 厚径比dh 接触面形式 信号类型 ESP-Ⅱ 500 压敏硅膜片 ϕ 10.5 ϕ 1.6 0.47 柔性 电压 PDA 500 电阻应变片 ϕ 7.6 ϕ 1.6 0.21 刚性 应变 EPL-D1 500 电阻应变片 ϕ 5.0 ϕ 1.5 0.32 刚性 电压 表 2 静力离心试验3种土压计实测土压力
Table 2 Earth pressures measured of three types of earth pressure transducers by static centrifuge spinning up 5g to 50g
离心加速度/g 土层深度/m 传感器位置/m 土压计实测值/kPa ESP-Ⅱ(IEM) PDA(TML) EPL-D1(Measurement) 5 2.0 0.75 3.41 4.89 4.33 1.25 7.01 5.81 7.66 1.75 9.97 7.48 9.23 10 4.0 1.50 7.39 9.69 9.41 2.50 14.59 13.38 16.25 3.50 22.15 17.08 21.41 15 6.0 2.25 12.46 14.40 13.11 3.75 22.89 21.23 24.74 5.25 33.69 27.32 30.28 20 8.0 3.00 16.80 19.20 18.00 5.00 30.74 28.89 32.86 7.00 45.51 36.92 40.06 30 12.0 4.50 25.48 29.08 25.85 7.50 44.31 45.88 49.20 10.50 69.51 60.65 65.54 40 16.0 6.00 36.18 39.60 36.08 10.00 62.49 63.41 66.46 14.00 89.81 83.54 87.41 50 20.0 7.50 47.82 49.66 51.51 12.50 78.28 80.31 82.43 17.50 106.89 107.35 109.85 -
[1] 张建民, 于玉贞, 濮家骝, 等. 电液伺服控制离心机振动台系统研制[J]. 岩土工程学报, 2004, 26(6): 843-845. http://cge.nhri.cn/cn/article/id/11539 ZHANG Jianmin, YU Yuzhen, PU Jialiu, el at. Development of a shaking table in electro-hydraulic servo-control centrifuge[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 843-845. (in Chinese) http://cge.nhri.cn/cn/article/id/11539
[2] 陈云敏, 马鹏程, 唐耀. 土体的本构模型和超重力物理模拟[J]. 力学学报, 2020, 52(4): 901-915. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm CHEN Yunmin, MA Pengcheng, TANG Yao. Constitutive models and hypergravity physical simulation of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 901-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm
[3] 土工离心模型试验技术规程: DL/T 2013—2020[S]. 北京: 中国建筑工业出版社, 2020. Specification for Geotechnical Centrifuge Model Test Techniques: DL/T 2013—2020[S]. Beijing: China Architecture and Building, 2020. (in Chinese)
[4] 港口工程离心模型试验技术规程: JTS/T 231—7—2013[S]. 北京: 人民交通出版社, 2013. Code for Centrifugal Model Test for Port Engineering: JTS/T 231-7-2013[S]. Beijing: China Communications Press, 2013. (in Chinese)
[5] 曾辉, 余尚江. 岩土压力传感器匹配误差的计算[J]. 岩土力学, 2001, 22(1): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200101026.htm ZENG Hui, YU Shangjiang. The calculation of matching error of rock-soil pressure transducer[J]. Rock and Soil Mechanics, 2001, 22(1): 99-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200101026.htm
[6] MIURA K, OTSUKA N, KOHAMA E, et al. The size of earth pressure cells on measurement in granular materials[J]. The Japanese Geotechnical Society, 2003, 43(5): 133-147.
[7] 余尚江, 曾辉. 土中自由场应力与结构表面压力测量的差异[J]. 岩土工程学报, 2003, 25(6): 654-657. http://cge.nhri.cn/cn/article/id/11299 YU Shangjiang, ZENG Hui. The difference between measurements of stress in soil and pressure on wall-surface[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(6): 654-657. (in Chinese) http://cge.nhri.cn/cn/article/id/11299
[8] JOSEPH F L, BRENT T. Laboratory calibration of earth pressure cells[J]. Geotechnical Testing Journal, 2005, 28(2): 188-196. doi: 10.1520/GTJ12089
[9] TALESNICK M. Measuring soil contact pressure on a solid boundary and quantifying soil arching[J]. Geotechnical Testing Journal, 2005, 28(2): 171-179. doi: 10.1520/GTJ12484
[10] 徐光明, 陈爱忠, 曾友金, 等. 超重力场中界面土压力的测量[J]. 岩土力学, 2007, 28(12): 2671-2674. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200712040.htm XU Guangming, CHEN Aizhong, ZENG Youjin, et al. Measurement of boundary total stress in a multi-gravity environment[J]. Rock and Soil Mechanics, 2007, 28(12): 2671-2674. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200712040.htm
[11] WEILER W A, KULHAWAY F H. Factors affecting stress cell measurement in soil[J]. Journal of the Geotechnical Engineering Division, ASCE, 1982, 108(12): 1529-1548. doi: 10.1061/AJGEB6.0001393
[12] EGAN D, MERRIFIELD C K. The use of miniature earth pressure cells in a multi-gravity environment[C]// Centrifuge 98. Tokyo, 1998.
[13] DAVE T N, DASAKA S M. In-house calibration of pressure transducers and effect of material thickness[J]. Geo-mechanics and Engineering, 2013, 5(1): 1-15.
[14] 魏永权, 罗强, 张良, 等. 离心力场中微型土压力传感器非线性响应分析[J]. 岩土力学, 2015, 36(1): 286-292. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501039.htm WEI Yongquan, LUO Qiang, ZHANG Liang, et al. Study of nonlinear response of miniature earth pressure transducer in centrifugal force field[J]. Rock and Soil Mechanics, 2015, 36(1): 286-292. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501039.htm
[15] 芮瑞, 吴端正, 胡港, 等. 模型试验中膜式土压力盒标定及其应用[J]. 岩土工程学报, 2016, 38(5): 837-845. doi: 10.11779/CJGE201605009 RUI Rui, WU Duanzheng, HU Gang, et al. Calibration tests on diaphragm-type pressure cells[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 837-845. (in Chinese) doi: 10.11779/CJGE201605009
[16] 梁波, 厉彦君, 凌学鹏, 等. 离心模型试验中微型土压力盒土压力测定[J]. 岩土力学, 2019, 40(2): 818-826. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902047.htm LIANG Bo, LI Yanjun, LING Xuepeng, et al. Centrifugal model test of micro box of earth pressure[J]. Rock and Soil Mechanics, 2019, 40(2): 818-826. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902047.htm
[17] 蔡正银, 代志宇, 徐光明, 等. 离心模型试验中界面土压力盒标定方法研究[J]. 水利学报, 2020, 51(6): 695-704. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202006007.htm CAI Zhengyin, DAI Zhiyu, XU Guangming, et al. Study on calibration method of interface soil pressure sensor in centrifugal model test[J]. Journal of Hydraulic Engineering, 2020, 51(6): 695-704. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202006007.htm
[18] 刘开源, 许成顺, 贾科敏, 等. 薄膜压力传感器(FSR)曲面土压力测量研究[J]. 岩土工程学报, 2020, 42(3): 584-591. doi: 10.11779/CJGE202003021 LIU Kaiyuan, XU Chengshun, JIA Kemin, et al. Research on measurement of curved soil pressure using thin film pressure sensor (FSR) [J]. Journal of Geotechnical Engineering, 2020, 42(3): 584-591. (in Chinese) doi: 10.11779/CJGE202003021
[19] GAO Y, WANG Y H. Calibration of tactile pressure sensors for measuring stress in soils[J]. Geotechnical testing journal, 2013, 36(4): 1-7.
[20] PALMER M C, O'ROURKE, THOMAS D, OLSON N A, et al. Tactile pressure sensors for soil-structure interaction assessment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1638-1645. doi: 10.1061/(ASCE)GT.1943-5606.0000143
[21] MADABHUSHI S S C, HAIGH S K. Using tactile pressure sensors to measure dynamic earth pressures around du-al-row walls[J]. International Journal of Physical Modelling in Geotechnics, 2018, 19(2): 58-71.
[22] 张紫涛, 徐添华, 徐韵, 等. 薄膜压力传感器在土工试验中的适用性初探[J]. 岩土工程学报, 2016, 39(增刊1): 209-213. doi: 10.11779/CJGE2017S1041 ZHANG Zitao, XU Tianhua, XU Yun, et al. Feasibility of applying tactile pressure sensors in geotechnical tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 39(S1): 209-213. (in Chinese) doi: 10.11779/CJGE2017S1041
[23] MADABHUSHI G. Centrifuge Modelling for Civil Engineers[M]. Boca Raton: CRC Press, 2015.
[24] 汤兆光. 超重力试验动态孔压传感器设计方法、性能评价与应用[D]. 哈尔滨: 中国地震局工程力学研究所, 2022. TANG Zhaoguang. Design Method and Performance Evaluation of Dynamic Miniature Pore Water Pressure Transducer in Centrifuge Modelling and Its Application[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2022. (in Chinese)
[25] JAKY J. The coefficient of earth pressure at rest[J]. Journal of the Society of Hungarian Architects and Engineers, 1944, 78(22): 355-358.
[26] 岩土工程仪器基本参数及通用技术条件: GB/T 15406—2007[S]. 北京: 中国标准出版社, 2007. Primary Parameter and General Specification for Geotechnical Engineering Instrument: GB/T 15406—2007[S]. Beijing: China Standards Publishing House, 2007. (in Chinese)
[27] 蔡正银, 代志宇, 徐光明, 等. 颗粒粒径和密实度对砂土K0值影响的离心模型试验研究[J]. 岩土力学, 2020, 41(12): 3882-3888. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012007.htm CAI Zhengyin, DAI Zhiyu, XU Guangming, et al. Effect of particle size and compaction on K0 value of sand by centrifugal model test[J]. Rock and Soil Mechanics, 2020, 41(12): 3882-3888. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012007.htm