Efficient hybrid simulation method for seismic response analysis of underground structures
-
摘要: 数值模拟是地下结构抗震分析的重要手段之一,然而地震动输入及边界效应、模型尺度规模等因素均会影响数值模拟的计算精度和效率,并且存在计算尺度、计算时间、计算精度之间的矛盾,因此如何高效、精确地模拟地下结构与地层相互作用体系的地震响应仍是亟待解决的关键问题。基于区域缩减法(DRM)将边界元和有限元相融合的核心思想,旨在建立能够合理模拟地下结构-地层系统地震响应特征的高效混合分析方法。首先将地下结构-地层整体模型划分为近场地层-结构内域子模型和远场地层外域子模型,通过构造重合节点保证内域-外域耦合边界处的位移连续性;其次,基于边界元求解外域自由场或地形影响下的非自由场地震动特征,并采用DRM构造矩阵方程将外域动力响应转化为等效地震荷载,可以在保证地震动合理输入的前提下极大地缩减外域模型尺寸,进而实现对内域中地下结构地震响应的快速参数化分析;最后,设计了两组典型算例以检验该方法的可靠性和高效性。结果表明:对于无地形影响下的双线隧道地震响应模拟,通过与远置边界参考解对比验证了方法的有效性;对于受地形条件影响下的双线隧道地震响应模拟,本方法在保证精度要求的基础上极大缩减了包括地形在内的外域模型范围,相比远置边界法和传统黏弹性法,可使计算模型尺度分别缩减97%和83%,计算时间减少72%和58%。此外,该方法还可推广到斜入射地震动作用下地下结构的动力响应分析。Abstract: The numerical simulation is critical for the seismic analysis of underground structures. However, its accuracy and efficiency are affected by the factors such as input of ground motion, boundary effect, model scale, which leads to the incompatibility among computational scale, time and accuracy. How to efficiently and accurately simulate the seismic response of the underground structure-ground interaction system is still an open question. A novel hybrid boundary element-finite element method in the framework of the domain reduction method (DRM) is proposed to efficiently simulate the seismic response characteristics of the subsurface structure-strata system. First, the overall subsurface structure-stratum model is divided into the inner domain sub-model of the near-field stratum structure and the outer domain sub-model of the far-field stratum, in which the displacement continuity at the inner-outer domain coupling boundary is ensured by overlapping nodes. Second, the non-free field vibration characteristics under the influences of free field and topography in the outer domain are solved by the boundary element method, and the dynamic response in the outer domain is converted into the equivalent seismic load by the DRM. The method greatly reduces the size of the outer domain, ensures the reasonable input of ground vibration, and realizes the rapid parametric analysis of the seismic response of subsurface structures in the inner domain. Further, two typical cases are designed to test the reliability and efficiency of the method. In the case of a two-line tunnel without the influences of topography, the accuracy of the method is validated by comparison with the reference solution. In another case of a two-line tunnel under the influences of terrain conditions, the numerical results show that compared with that of the remote boundary method and the traditional viscoelastic method, the computational cost is reduced by about 72% and 58%, respectively, and the computational scale is reduced by about 97% and 83%, respectively. In addition, the proposed method can be extended to the dynamic response analysis of subsurface structures under the action of oblique incident ground shaking.
-
-
表 1 地层和衬砌的材料参数
Table 1 Material parameters of strata and linings
材料参数 弹性模量/MPa 泊松比 密度/(kg·m-3) 衬砌 32500 0.20 2500 地层 100 0.25 2000 表 2 计算模型和耗时
Table 2 Computational models and computational time
方法 单元数量 计算时间/s 远置边界 64089 3460 黏弹性边界 13218 1928 本文方法 5199 826 -
[1] TSINIDIS G, DE SILVA F, ANASTASOPOULOS I, et al. Seismic behaviour of tunnels: from experiments to analysis[J]. Tunnelling and Underground Space Technology, 2020, 99: 103334. doi: 10.1016/j.tust.2020.103334
[2] 王国波, 彭祥军, 郝朋飞, 等. 近距离地下穿越结构地震响应研究综述[J]. 岩土工程学报, 2019, 41(11): 2026-2036. doi: 10.11779/CJGE201911007 WANG Guobo, PENG Xiangjun, HAO Pengfei, et al. Review of researches on seismic response of close underground crossing structures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2026-2036. (in Chinese) doi: 10.11779/CJGE201911007
[3] 刘晶波, 宝鑫, 谭辉, 等. 土-结构动力相互作用分析中基于内部子结构的地震波动输入方法[J]. 土木工程学报, 2020, 53(8): 87-96. LIU Jingbo, BAO Xin, TAN Hui, et al. Seismic wave input method for soil-structure dynamic interaction analysis based on internal substructure[J]. China Civil Engineering Journal, 2020, 53(8): 87-96. (in Chinese)
[4] 金丹丹, 陈国兴, 董菲蕃. 多地貌单元复合场地非线性地震效应特征二维分析[J]. 岩土力学, 2014, 35(6): 1818-1825. JIN Dandan, CHEN Guoxing, DONG Feifan. 2D analysis of nonlinear seismic effect characteristics of multi-geomorphic composite site[J]. Rock and Soil Mechanics, 2014, 35(6): 1818-1825. (in Chinese)
[5] 刘晶波, 谷音, 杜义欣. 一致黏弹性人工边界及黏弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070-1075. http://cge.nhri.cn/cn/article/id/12156 LIU Jingbo, GU Yin, DU Yixin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070-1075. (in Chinese) http://cge.nhri.cn/cn/article/id/12156
[6] 谭辉. 土-结构动力相互作用分析中地震波输入方法研究及应用[D]. 北京: 清华大学, 2018. TAN Hui. Research and Application of the Seismic Wave Input Method for Soil-Structure Dynamic Interaction Analysis[D]. Beijing: Tsinghua University, 2018. (in Chinese)
[7] 赵密, 李旭东, 高志懂, 等. 地震作用下土-深埋地下结构相互作用的高效时程分析方法[J]. 防灾减灾工程学报, 2021, 41(1): 39-45, 54. ZHAO Mi, LI Xudong, GAO Zhidong, et al. Efficient analysis for seismic soil-structure interaction with deep burial depth[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(1): 39-45, 54. (in Chinese)
[8] BIELAK J. Domain reduction method for three-dimensional earthquake modeling in localized regions, part Ⅰ: theory[J]. Bulletin of the Seismological Society of America, 2003, 93(2): 817-824. doi: 10.1785/0120010251
[9] WANG H X, YANG H, FENG Y, et al. Modeling and simulation of earthquake soil structure interaction excited by inclined seismic waves[J]. Soil Dynamics and Earthquake Engineering, 2021, 146: 106720. doi: 10.1016/j.soildyn.2021.106720
[10] ZHANG L, ZHANG J H. Local wavefield refinement using Fourier interpolation and boundary extrapolation for finite-element method based on domain reduction method[J]. GEOPHYSICS, 2022, 87(3): T251-T263. doi: 10.1190/geo2021-0503.1
[11] KONTOE S, ZDRAVKOVIC L, POTTS D M. An assessment of the domain reduction method as an advanced boundary condition and some pitfalls in the use of conventional absorbing boundaries[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(3): 309-330. doi: 10.1002/nag.713
[12] 胡丹, 李芬, 张开银. 饱和土-结构动力相互作用分析中地震动输入方法研究[J]. 岩土工程学报, 2018, 40(增刊2): 58-62. doi: 10.11779/CJGE2018S2012 HU Dan, LI Fen, ZHANG Kaiyin. Wave input method for saturated soil-structure dynamic interaction analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 58-62. (in Chinese) doi: 10.11779/CJGE2018S2012
[13] 刘中宪, 刘英, 孟思博, 等. 基于间接边界元法的近断层沉积谷地地震动模拟[J]. 岩土力学, 2021, 42(4): 1141-1155, 1169. LIU Zhongxian, LIU Ying, MENG Sibo, et al. Near-fault ground motion simulation of alluvial valley based on indirect boundary element method[J]. Rock and Soil Mechanics, 2021, 42(4): 1141-1155, 1169. (in Chinese)
[14] ALIELAHI H, KAMALIAN M, ADAMPIRA M. Seismic ground amplification by unlined tunnels subjected to vertically propagating SV and P waves using BEM[J]. Soil Dynamics and Earthquake Engineering, 2015, 71: 63-79. doi: 10.1016/j.soildyn.2015.01.007
[15] 朱俊, 梁建文. 基于FE-IBE耦合方法的地铁车站抗震分析[J]. 地震工程与工程振动, 2018, 38(4): 111-116. ZHU Jun, LIANG Jianwen. Seismic analysis of subway station by a FE-IBE coupling method[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(4): 111-116. (in Chinese)
[16] VASILEV G, PARVANOVA S, DINEVA P, et al. Soil-structure interaction using BEM-FEM coupling through ANSYS software package[J]. Soil Dynamics and Earthquake Engineering, 2015, 70: 104-117. doi: 10.1016/j.soildyn.2014.12.007
[17] SOARES D, GODINHO L. An overview of recent advances in the iterative analysis of coupled models for wave propagation[J]. Journal of Applied Mathematics, 2014, 2014: 1-21.
[18] LUCO J E, DE BARROS F C P. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space[J]. Earthquake Engineering & Structural Dynamics, 1994, 23(3): 321-340.
[19] WONG H L. Diffraction of P, SV, and Rayleigh waves by surface topography[D]. California: University of California, 1979.
[20] RICKER N. The form and laws of propagation of seismic wavelets[J]. Geophysics, 1953, 18(1): 10-40. doi: 10.1190/1.1437843
-
期刊类型引用(25)
1. 蒙贤忠,夏宇磬,周传波,冯庆高,蒋楠,杨玉民. 土–岩地层水平孔爆破诱发振动传播特征及预测. 岩石力学与工程学报. 2025(03): 737-751 . 百度学术
2. 乔雄,刘文高,倪伟淋,张伟,杨鑫,黄锦聪,刘锦龙. 基于爆破荷载等效施加方法的振动波形预测与古建筑安全评估. 地震工程学报. 2024(01): 16-25 . 百度学术
3. 王小飞,胡少斌,王恩元,黄俊,颜正勇. 干冰粉热冲击破岩基坑围护结构振动安全研究. 中国公路学报. 2024(03): 371-381 . 百度学术
4. 伍福寿,张学民,韩淼,陈进,胡涛,周贤舜,王树英,朱凯. 近接既有隧道爆破激发地震波成分构成及特性研究. 中南大学学报(自然科学版). 2024(04): 1406-1417 . 百度学术
5. 孙丰森,王海亮,张勇,张雨晨. 埋地输油管道对胶州湾第二海底隧道爆破施工的动力响应. 山东科技大学学报(自然科学版). 2024(03): 75-84 . 百度学术
6. 李坚,赵岩,周文磊,王海龙. 掏槽爆破作用下振动波形预测及影响分区确定. 工程爆破. 2024(04): 122-130 . 百度学术
7. 何理,殷琳,钟冬望,张鑫玥,赵永明,熊海涛,陈莎莎,NJAMBA Bruno. 爆破振动强度、波形与频谱研究综述:预测及主动控制. 爆破. 2024(03): 189-204+262 . 百度学术
8. 望远福,李云赫,赵岩,范杰林. 隧道爆破振动中掏槽段的波形预测方法. 中国测试. 2024(10): 150-156 . 百度学术
9. 骆峻伟,胡少斌,黄俊,王小飞. 隧道干冰粉膨胀破岩绿色施工技术研究. 现代交通技术. 2024(06): 46-49 . 百度学术
10. 周贤舜,张学民,武朝光,胡涛,陈鑫磊,段亚. 基于低碳减排的隧道水封爆破优化效果研究. 铁道科学与工程学报. 2023(03): 996-1007 . 百度学术
11. 张雨晨,王海亮,石晨晨,丁新宇,赵军. 隧道爆破下邻近管道动力响应的数值模拟. 工程爆破. 2023(03): 95-105 . 百度学术
12. 魏海霞,祝杰,杨小林,褚怀保. 高压气体爆破作用下层状岩体的地表振动效应预测方法. 振动与冲击. 2023(20): 1-11 . 百度学术
13. 赵珂,蒋楠,周传波,姚颖康,朱斌. 爆破地震荷载作用下埋地燃气管道动力响应尺寸效应研究. 振动与冲击. 2022(02): 64-73 . 百度学术
14. 刘桂勇,刘小鸣,陈士海. 延时时间对地表振动叠加效应的影响. 工程爆破. 2022(01): 63-70 . 百度学术
15. 刘潇,欧运平,曹鲁鹏,彭伟哲. 羊头山隧道开挖围岩稳定性监测分析. 甘肃科学学报. 2022(04): 137-140+152 . 百度学术
16. 李新平,张雪屏,刘飞香,郑博闻,罗忆. 群孔齐发爆破岩体振动频谱特性研究. 爆破. 2021(01): 14-20+35 . 百度学术
17. 朱斌,蒋楠,周传波,贾永胜,罗学东,吴廷尧. 粉质黏土层直埋铸铁管道爆破地震效应. 浙江大学学报(工学版). 2021(03): 500-510 . 百度学术
18. 石伟民,何方,陈士海,揭海荣,李海波. 新建隧道下穿既有铁路结构爆破振动影响分区及减震优化. 华侨大学学报(自然科学版). 2021(06): 764-771 . 百度学术
19. 刘小鸣,陈士海. 群孔微差爆破的地表振动波形预测及其效应分析. 岩土工程学报. 2020(03): 551-560 . 本站查看
20. 刘航雨,陈寿根. 深埋软岩紧急救援站爆破安全距离的研究. 四川建筑. 2020(02): 145-146+149 . 百度学术
21. 陈元利,付玉华,郭丽艳,王庆,张康康. “小构造”复杂岩石条件下掏槽爆破的试验研究. 矿业研究与开发. 2020(06): 23-27 . 百度学术
22. 关祥宏. 矿山隧道掘进围岩稳定性动态监测研究. 矿冶工程. 2020(03): 34-38 . 百度学术
23. 陈士海,刘小鸣,张子华,林从谋. 隧道掘进爆破诱发隧道后方开挖段地表振动效应分析. 岩土工程学报. 2020(10): 1800-1806 . 本站查看
24. 陈经鹏,陈士海. 隧道掘进爆破时掌子面前方开挖段的地表振速预测. 华侨大学学报(自然科学版). 2020(06): 718-726 . 百度学术
25. Chen Li,Shufeng Liang,Yongchao Wang,Long Li,Dianshu Liu. Attenuation Parameters of Blasting Vibration by Fuzzy Nonlinear Regression Analysis. Journal of Beijing Institute of Technology. 2020(04): 520-525 . 必应学术
其他类型引用(9)
-
其他相关附件