• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Haitao, WANG Zhikun. Efficient hybrid simulation method for seismic response analysis of underground structures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 45-53. DOI: 10.11779/CJGE20221240
Citation: YU Haitao, WANG Zhikun. Efficient hybrid simulation method for seismic response analysis of underground structures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 45-53. DOI: 10.11779/CJGE20221240

Efficient hybrid simulation method for seismic response analysis of underground structures

More Information
  • Received Date: October 09, 2022
  • Available Online: January 08, 2024
  • The numerical simulation is critical for the seismic analysis of underground structures. However, its accuracy and efficiency are affected by the factors such as input of ground motion, boundary effect, model scale, which leads to the incompatibility among computational scale, time and accuracy. How to efficiently and accurately simulate the seismic response of the underground structure-ground interaction system is still an open question. A novel hybrid boundary element-finite element method in the framework of the domain reduction method (DRM) is proposed to efficiently simulate the seismic response characteristics of the subsurface structure-strata system. First, the overall subsurface structure-stratum model is divided into the inner domain sub-model of the near-field stratum structure and the outer domain sub-model of the far-field stratum, in which the displacement continuity at the inner-outer domain coupling boundary is ensured by overlapping nodes. Second, the non-free field vibration characteristics under the influences of free field and topography in the outer domain are solved by the boundary element method, and the dynamic response in the outer domain is converted into the equivalent seismic load by the DRM. The method greatly reduces the size of the outer domain, ensures the reasonable input of ground vibration, and realizes the rapid parametric analysis of the seismic response of subsurface structures in the inner domain. Further, two typical cases are designed to test the reliability and efficiency of the method. In the case of a two-line tunnel without the influences of topography, the accuracy of the method is validated by comparison with the reference solution. In another case of a two-line tunnel under the influences of terrain conditions, the numerical results show that compared with that of the remote boundary method and the traditional viscoelastic method, the computational cost is reduced by about 72% and 58%, respectively, and the computational scale is reduced by about 97% and 83%, respectively. In addition, the proposed method can be extended to the dynamic response analysis of subsurface structures under the action of oblique incident ground shaking.
  • [1]
    TSINIDIS G, DE SILVA F, ANASTASOPOULOS I, et al. Seismic behaviour of tunnels: from experiments to analysis[J]. Tunnelling and Underground Space Technology, 2020, 99: 103334. doi: 10.1016/j.tust.2020.103334
    [2]
    王国波, 彭祥军, 郝朋飞, 等. 近距离地下穿越结构地震响应研究综述[J]. 岩土工程学报, 2019, 41(11): 2026-2036. doi: 10.11779/CJGE201911007

    WANG Guobo, PENG Xiangjun, HAO Pengfei, et al. Review of researches on seismic response of close underground crossing structures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2026-2036. (in Chinese) doi: 10.11779/CJGE201911007
    [3]
    刘晶波, 宝鑫, 谭辉, 等. 土-结构动力相互作用分析中基于内部子结构的地震波动输入方法[J]. 土木工程学报, 2020, 53(8): 87-96.

    LIU Jingbo, BAO Xin, TAN Hui, et al. Seismic wave input method for soil-structure dynamic interaction analysis based on internal substructure[J]. China Civil Engineering Journal, 2020, 53(8): 87-96. (in Chinese)
    [4]
    金丹丹, 陈国兴, 董菲蕃. 多地貌单元复合场地非线性地震效应特征二维分析[J]. 岩土力学, 2014, 35(6): 1818-1825.

    JIN Dandan, CHEN Guoxing, DONG Feifan. 2D analysis of nonlinear seismic effect characteristics of multi-geomorphic composite site[J]. Rock and Soil Mechanics, 2014, 35(6): 1818-1825. (in Chinese)
    [5]
    刘晶波, 谷音, 杜义欣. 一致黏弹性人工边界及黏弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070-1075. http://cge.nhri.cn/cn/article/id/12156

    LIU Jingbo, GU Yin, DU Yixin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070-1075. (in Chinese) http://cge.nhri.cn/cn/article/id/12156
    [6]
    谭辉. 土-结构动力相互作用分析中地震波输入方法研究及应用[D]. 北京: 清华大学, 2018.

    TAN Hui. Research and Application of the Seismic Wave Input Method for Soil-Structure Dynamic Interaction Analysis[D]. Beijing: Tsinghua University, 2018. (in Chinese)
    [7]
    赵密, 李旭东, 高志懂, 等. 地震作用下土-深埋地下结构相互作用的高效时程分析方法[J]. 防灾减灾工程学报, 2021, 41(1): 39-45, 54.

    ZHAO Mi, LI Xudong, GAO Zhidong, et al. Efficient analysis for seismic soil-structure interaction with deep burial depth[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(1): 39-45, 54. (in Chinese)
    [8]
    BIELAK J. Domain reduction method for three-dimensional earthquake modeling in localized regions, part Ⅰ: theory[J]. Bulletin of the Seismological Society of America, 2003, 93(2): 817-824. doi: 10.1785/0120010251
    [9]
    WANG H X, YANG H, FENG Y, et al. Modeling and simulation of earthquake soil structure interaction excited by inclined seismic waves[J]. Soil Dynamics and Earthquake Engineering, 2021, 146: 106720. doi: 10.1016/j.soildyn.2021.106720
    [10]
    ZHANG L, ZHANG J H. Local wavefield refinement using Fourier interpolation and boundary extrapolation for finite-element method based on domain reduction method[J]. GEOPHYSICS, 2022, 87(3): T251-T263. doi: 10.1190/geo2021-0503.1
    [11]
    KONTOE S, ZDRAVKOVIC L, POTTS D M. An assessment of the domain reduction method as an advanced boundary condition and some pitfalls in the use of conventional absorbing boundaries[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(3): 309-330. doi: 10.1002/nag.713
    [12]
    胡丹, 李芬, 张开银. 饱和土-结构动力相互作用分析中地震动输入方法研究[J]. 岩土工程学报, 2018, 40(增刊2): 58-62. doi: 10.11779/CJGE2018S2012

    HU Dan, LI Fen, ZHANG Kaiyin. Wave input method for saturated soil-structure dynamic interaction analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 58-62. (in Chinese) doi: 10.11779/CJGE2018S2012
    [13]
    刘中宪, 刘英, 孟思博, 等. 基于间接边界元法的近断层沉积谷地地震动模拟[J]. 岩土力学, 2021, 42(4): 1141-1155, 1169.

    LIU Zhongxian, LIU Ying, MENG Sibo, et al. Near-fault ground motion simulation of alluvial valley based on indirect boundary element method[J]. Rock and Soil Mechanics, 2021, 42(4): 1141-1155, 1169. (in Chinese)
    [14]
    ALIELAHI H, KAMALIAN M, ADAMPIRA M. Seismic ground amplification by unlined tunnels subjected to vertically propagating SV and P waves using BEM[J]. Soil Dynamics and Earthquake Engineering, 2015, 71: 63-79. doi: 10.1016/j.soildyn.2015.01.007
    [15]
    朱俊, 梁建文. 基于FE-IBE耦合方法的地铁车站抗震分析[J]. 地震工程与工程振动, 2018, 38(4): 111-116.

    ZHU Jun, LIANG Jianwen. Seismic analysis of subway station by a FE-IBE coupling method[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(4): 111-116. (in Chinese)
    [16]
    VASILEV G, PARVANOVA S, DINEVA P, et al. Soil-structure interaction using BEM-FEM coupling through ANSYS software package[J]. Soil Dynamics and Earthquake Engineering, 2015, 70: 104-117. doi: 10.1016/j.soildyn.2014.12.007
    [17]
    SOARES D, GODINHO L. An overview of recent advances in the iterative analysis of coupled models for wave propagation[J]. Journal of Applied Mathematics, 2014, 2014: 1-21.
    [18]
    LUCO J E, DE BARROS F C P. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space[J]. Earthquake Engineering & Structural Dynamics, 1994, 23(3): 321-340.
    [19]
    WONG H L. Diffraction of P, SV, and Rayleigh waves by surface topography[D]. California: University of California, 1979.
    [20]
    RICKER N. The form and laws of propagation of seismic wavelets[J]. Geophysics, 1953, 18(1): 10-40. doi: 10.1190/1.1437843
  • Related Articles

    [1]MA Qiang, YANG Yiqi, ZHOU Fengxi, SHAO Shengjun. Seismic response of free-field earthquakes in unsaturated soils with P-wave incidence under thermal effects[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 569-579. DOI: 10.11779/CJGE20230841
    [2]JIANG Zhi-wei, LIU Jing-bo, XU Cheng-shun. Prediction method for seismic responses of underground structures in shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1220-1227. DOI: 10.11779/CJGE202107006
    [3]HU Dan, LI Fen, ZHANG Kai-yin. Wave input method for saturated soil-structure dynamic interaction analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 58-62. DOI: 10.11779/CJGE2018S2012
    [4]LIANG Jian-wen, ZHU Jun. FEM-IBEM coupling method for nonlinear seismic response analysis of underground structures in water-saturated soft soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1977-1987. DOI: 10.11779/CJGE201811003
    [5]DU Xiu-li, XU Zi-gang, XU Cheng-shun, LI Yang. Inertia force-displacement method for seismic analysis of shallow buried underground structures[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 583-591. DOI: 10.11779/CJGE201804001
    [6]LI Wei-hua, ZHENG Jie. Effects of saturation on free-field responses of site due to plane P-wave incidence[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 427-435. DOI: 10.11779/CJGE201703005
    [7]WANG Du-guo, ZHAO Cheng-gang. Two-dimensional equivalent linear seismic analysis of free field in layered half-space due to oblique incidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 554-561. DOI: 10.11779/CJGE201603020
    [8]CHEN Ren-ren, ZHANG Jian-min. Comparison of simplified seismic design methods for cross-section of underground structures of subway[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 134-141. DOI: 10.11779/CJGE2015S1027
    [9]LI Liang, YANG Xiao-hui, DU Xiu-li. Improved response displacement method for evaluating seismic responses of underground structures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1360-1364. DOI: 10.11779/CJGE201407021
    [10]WANG Zihui, ZHAO Chenggang, LI Weihua, XU Chunling. Input seismic wave fields in elastic half-space interbedded by liquid-filled porous medium and solid medium[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 33-36.
  • Cited by

    Periodical cited type(6)

    1. 许盛,杨明山,唐志勇,杨皓宇,李小兴,刘念. 察尔汗盐湖地区饱和盐渍软土地基处理. 人民长江. 2024(S2): 178-184 .
    2. 何鸿烈,杨扬,王志壮,司宁强,李生泽. 戈壁料高填方强夯补强应用研究. 建筑施工. 2023(03): 534-537 .
    3. 张学军. 强夯压实技术在路基补强施工的应用及优化. 建筑机械. 2023(07): 61-66+70 .
    4. 赵延林,龚雨林,张子煜. 深厚换填砂土地基强夯有效加固深度的影响因素. 黑龙江科技大学学报. 2023(05): 710-717 .
    5. 刘文俊,李岳,蔡靖,戴轩,水伟厚,董炳寅. 基于强夯应力波传播模型的夯击参数研究. 岩土力学. 2023(S1): 427-435 .
    6. 秦劭杰,戎晓宁,张路银,彭梦凯,董炳寅. 特殊场地强夯振动监测及隔振效果研究. 地基处理. 2023(S2): 84-90 .

    Other cited types(7)

Catalog

    Article views (442) PDF downloads (156) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return