• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑颗粒破碎影响的粗粒土的剪切强度理论

徐永福

徐永福. 考虑颗粒破碎影响的粗粒土的剪切强度理论[J]. 岩土工程学报, 2018, 40(7): 1171-1179. DOI: 10.11779/CJGE201807002
引用本文: 徐永福. 考虑颗粒破碎影响的粗粒土的剪切强度理论[J]. 岩土工程学报, 2018, 40(7): 1171-1179. DOI: 10.11779/CJGE201807002
XU Yong-fu. Theory of shear strength of granular materials based on particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1171-1179. DOI: 10.11779/CJGE201807002
Citation: XU Yong-fu. Theory of shear strength of granular materials based on particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1171-1179. DOI: 10.11779/CJGE201807002

考虑颗粒破碎影响的粗粒土的剪切强度理论  English Version

基金项目: 国家自然科学基金项目(41472251,41630633)
详细信息
    作者简介:

    徐永福(1967- ),男,江苏泰兴人,博士,教授,从事非饱和(特殊)土力学和地基处理的研究。E-mail: yongfuxu@sjtu.edu.cn。

  • 中图分类号: TU47

Theory of shear strength of granular materials based on particle breakage

  • 摘要: 由于粗粒土的粒径相差很大,通过剪切试验测量粗粒土的剪切强度很麻烦,且剪切试验费时费力、试验数据离散性大;另外,已有剪切强度经验公式中的参数没有明确的物理含义,工程应用中难以确定。本文根据颗粒破碎的分形模型,揭示单颗粒破碎强度的尺寸效应,假设剪切强度是颗粒接触面上的摩擦力,导出用正应力幂函数表示的粗粒土剪切强度公式,幂函数的指数是颗粒破碎分维的函数,并采用垃圾炉渣的颗粒破碎分维和剪切强度试验结果进行验证。
    Abstract: Great efforts have been made to determine the shear strength of coarse granular materials using both elaborate laboratory tests and empirical methods. However, the elaborate laboratory tests are difficult and time consuming to perform, and the physical meaning of empirical parameters is not obvious in the empirical methods. A simple method to determine the shear strength of coarse granular materials is proposed based on a fractal model for particle breakage. The shear strength of coarse granular materials can be seen as the friction between particle contacts, and the particle contacts can be modeled by the fractal model for particle breakage. Thus the shear strength of coarse granular materials can be easily estimated using the fractal dimension of particle-size distribution. The shear strength of coarse granular materials obtained from the proposed method is in satisfactory agreement with the experimental data of bottom ash from municipal solid waste incineration (MSWI).
  • [1] XU Y F, DONG P, SUN D A.Tensile strength of granular materials[J]. Chinese J Rock Mech Eng, 2003, 22(6): 913-918.
    [2] HU W, YIN Z Y, DANO C, et al.A constitutive model for granular materials considering grain breakage[J]. Science in China Series E, 2011, 54(8): 2188-2196.
    [3] YIN Z Y, HICHER P Y, DANO C, et al.Modeling the mechanical behavior of very coarse granular materials[J]. Journal of Engineering Mechanics ASCE, 2017, 143(1): C401600.
    [4] 尹振宇, 许强, 胡伟. 考虑颗粒破碎效应的粒状材料本构研究:进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180.
    (YIN Zhen-yu, XU Qiang, HU Wei.Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese))
    [5] VALDES J R, KOPRULU E.Characterization of fines produced by sand crushing[J]. J Geotech and Geoenvir Eng, 2007, 133(12): 1626-1630.
    [6] 刘映晶, 王建华, 尹振宇, 等. 考虑级配效应的粒状材料本构模拟[J]. 岩土工程学报, 2015, 37(2): 299-305.
    (LIU Ying-jing, WANG Jian-hua, YIN Zhen-yu, et al.Constitutive modeling for granular materials considering grading effect[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 299-305. (in Chinese))
    [7] 李罡, 刘映晶, 尹振宇, 等. 粒状材料临界状态的颗粒级配效应[J]. 岩土工程学报, 2014, 36(3): 452-457.
    (LI Gang, LIU Ying-jing, YIN Zhen-yu, et al.Grading effect on critical state behavior of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 452-457. (in Chinese))
    [8] HARDIN BO.Crushing of soil particles[J]. J Geotech Eng, ASCE, 1985, 111(10): 1177-1192.
    [9] XU Y F, LIU S Y.Fractal character of grain-size distribution of expansive soils[J]. Fractals, 1999, 7(4): 359-366.
    [10] 徐永福, 奚悦, 冯兴波, 等. 岩石单颗粒压缩破碎的数值模拟分析[J]. 工程地质学报, 2015, 23(4): 589-596.
    (XU Yong-fu, XI Yue, FENG Xing-bo, et al.Simulation of rock grain breakage using PFC2D[J]. Journal of Engineering Geology, 2015, 23(4): 589-596. (in Chinese))
    [11] 张季如, 胡泳, 张弼文. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 2015, 37(5): 784-791.
    (ZHANG Ji-ru, HU Yong, ZHANG Bi-wen, et al.Fractal behavior of particle-size distribution during particle crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784-791. (in Chinese))
    [12] 蔡正银, 李小梅, 关云飞, 等. 堆石料的颗粒破碎规律研究[J]. 岩土工程学报, 2016, 38(5): 923-929.
    (CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, et al.Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. (in Chinese))
    [13] STEACY S J, SAMMIS C G.An automaton for fractal patterns of fragmentation[J]. Nature, 1991, 360: 250-252.
    [14] PERFECT E.Fractal models for the fragmentation of rocks and soils: a review[J]. Eng Geol, 1997, 48: 185-198.
    [15] PALMER A C, SANDERSON T J O. Fractal crushing of ice and brittle solids[C]// Proc Roy Soc Lond A. 2001: 469-477.
    [16] XU Y F, XU J P, WANG J H.Fractal model for size effect on ice failure strength[J]. Cold Reg Sci Tech, 2004, 40(1/2): 135-144.
    [17] XU Y F.Explanation of sealing phenomenon based oil fractal fragmentation of granular materials[J]. Mech Res Comm, 2005, 32(2): 209-220.
    [18] 徐永福, 王益栋, 奚悦, 等. 岩石颗粒破碎的尺寸效应[J]. 工程地质学报, 2014, 22(6): 1023-1027.
    (XU Yong-fu, WANG Yi-dong, XI Yue, et al.Size effect on crushing of rock particles[J]. Journal of Engineering Geology, 2014, 22(6): 1023-1027. (in Chinese))
    [19] XU Y F.Approach to the Weibull modulus based on fractal fragmentation of particles[J]. Powder Technology, 2016, 292: 99-107.
    [20] FROSSARD E, HU W, DANO C, et al.Rockfill shear strength evaluation: a rational method based on size effects[J]. Géotechnique, 2012, 62(5): 415-427.
    [21] XU Y F, FENG X B, ZHU H G.Fractal model for rockfill shear strength based on particle fragmentation[J]. Granular Matter, 2015, 17: 753-761. DOI 10.1007/s10035-015-0591-z.
    [22] LUAN B, ROBBINS M O.The breakdown of continuum models for mechanical contacts. Nature, 2005, 435: 929.
    [23] MANDELBROT B B.The fractal geometry of nature[M]. San Franciso: Freeman WH, 1982.
    [24] TURCOTTE D L.Fractals and fragmentation[J]. J of Geophy Res, 1986, 91: 1921-1926.
    [25] JAEGER J C.Failure of rocks under tensile conditions[J]. Int J Rock Min Sci, 1967, 4: 219.
    [26] WEIBULL W.A statistical distribution function of wide applicability[J]. J Appl Mech, 1951, 18: 293.
    [27] MO Y F, TURNER K T, SZLUFARSKA I.Friction laws at the nanoscale[J]. Nature, 2009, 457: 1116-1118.
    [28] LINCOLN B.Elastic deformation and the laws of friction[J]. Nature, 1953, 172: 169.
  • 期刊类型引用(11)

    1. 李淑娥,陈志明,徐永福,徐宇冉,康峰沂,杜仲宝. 基于颗粒分布分形模型毛细水上升高度计算分析. 岩土工程学报. 2024(10): 2221-2228 . 本站查看
    2. 曲诗章,刘晓明,黎莉,陈仁朋. 基于双分形级配模型参数的粗粒土渗透系数计算公式. 岩土工程学报. 2023(01): 144-152 . 本站查看
    3. 韩志洋,曹志翔,黄开放. 基于离散元模拟的土石混合体剪切与变形特性研究. 中国农村水利水电. 2023(05): 238-244 . 百度学术
    4. 刘晓义,胡敏,刘大顺. 基于离散元法的砂砾石颗粒破碎特征研究. 低温建筑技术. 2023(12): 24-28 . 百度学术
    5. 孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 . 百度学术
    6. 王瑞,郭聚坤,尹斌,雷胜友,魏道凯. 钙质砂颗粒形状及破碎特性试验研究. 海洋工程. 2022(05): 158-166 . 百度学术
    7. 陈晓斌,郭云鹏,蔡德钩,尧俊凯,肖源杰. 铁路工程粗颗粒土路基填料研究现状与发展综述. 路基工程. 2021(03): 1-11 . 百度学术
    8. 叶阳升,朱宏伟,尧俊凯,蔡德钩,安再展. 高速铁路路基振动压实理论与智能压实技术综述. 中国铁道科学. 2021(05): 1-11 . 百度学术
    9. 于玉贞,张向韬,王远,吕禾,孙逊. 堆石料真三轴条件下力学特性试验研究进展. 工程力学. 2020(04): 1-21+29 . 百度学术
    10. 王晓帅,王子寒,景晓昆,肖成志. 粗粒土大型直剪试验宏细观研究与离散元模拟. 深圳大学学报(理工版). 2020(03): 279-286 . 百度学术
    11. 孟敏强,王磊,蒋翔,汪成贵,刘汉龙,肖杨. 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟. 岩土力学. 2020(09): 2953-2962 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数:  417
  • HTML全文浏览量:  10
  • PDF下载量:  334
  • 被引次数: 31
出版历程
  • 收稿日期:  2017-06-10
  • 发布日期:  2018-07-24

目录

    /

    返回文章
    返回