Formula for permeability coefficient of coarse-grained soil based on parameters of two-dimensional fractal gradation model
-
摘要: 粗粒土在自然界中分布广泛且在工程中应用普遍。渗透性是粗粒土的重要性质,对于同种粗粒土,因颗粒级配与孔隙特征几乎决定其渗透性,原则上其渗透系数应该可基于颗粒级配和孔隙特征参量计算得到。采用基于分形理论建立的双分形级配模型对粗粒土的连续级配、间断级配进行定量描述,以确定该级配模型的适用性并获得级配模型参数。在此基础上,基于双分形级配模型参数和Kozeny-Carman公式构造出包含级配参量及孔隙率的渗透系数计算公式。在论述了计算公式中各项物理意义后,基于现有文献的实测数据验证该计算公式的有效性。结果表明,双分形级配模型能准确唯一地定量描述粗粒土的颗粒级配;建立的含颗粒级配参量和孔隙率的粗粒土渗透系数计算公式是合理的,该公式适用于计算连续和间断级配粗粒土的渗透系数。Abstract: The coarse-grained soil is widely distributed in nature and used in engineering. The permeability is one of its key properties, and for the same type of coarse-grained soil, its permeability is almost determined by the grain-size distribution and the pore characteristics. In principle, its permeability coefficient can be calculated based on the grain-size distribution and the pore characteristic parameters. The two-dimensional fractal gradation model based on the fractal theory is used to quantitatively describe the continuous gradation and gap gradation of the coarse-grained soil so as to determine the applicability of the gradation model and obtain its parameters. Then, based on the parameters of the two-dimensional fractal gradation model and the Kozeny-Carman formula, a formula for calculating the permeability coefficient including grain-size distribution parameters and the porosity is established. After discussing the physical meaning of each item in the formula, the validation of the formula is verified by using the measured data in the existing researches. The results show that the two-dimensional gradation model can accurately and uniquely describe the grain size distribution of the coarse-grained soil. The established formula for calculating the permeability coefficient of the coarse-grained soil including grain-size distribution parameters and the porosity is reasonable, and it is suitable for calculating the permeability coefficient of continuously graded and gap-graded coarse-grained soil.
-
Keywords:
- coarse-grained soil /
- permeability coefficient /
- fractal model /
- grain-size distribution /
- porosity
-
-
表 1 粗粒土双分形级配模型参数
Table 1 Parameters of two-dimensional fractal gradation model for coarse-grained soil
文献来源 级配编号 级配类型 D1 D2 RT1/mm RT2/mm MT1 MT2 R2 文献[4] JP1 连续 2.592 1.912 45 3.0623 64.00 36.00 0.9971 JP2 连续 2.588 2.528 45 9.1935 55.00 45.00 0.9972 JP3 连续 2.564 2.580 45 10.3868 49.95 50.05 0.9980 JP4 连续 2.500 2.000 45 3.9093 69.00 31.00 0.9983 JP5 连续 2.512 2.472 45 8.1350 67.25 32.75 0.9966 JP6 连续 2.616 2.204 45 7.1977 83.15 16.85 0.9969 JP7 连续 2.400 2.024 45 4.9916 75.00 25.00 0.9996 JP8 连续 2.400 2.224 45 4.4177 75.00 25.00 0.9991 JP9 连续 2.396 2.416 45 3.9097 74.35 25.65 0.9981 文献[5] TYU1 连续 1.904 2.328 20 1.4164 77.00 23.00 0.9962 TYU2 连续 2.292 0.104 20 0.3199 90.00 10.00 0.9979 TYU3 连续 2.404 1.284 20 0.6747 92.05 7.95 0.9969 TYU4 连续 2.308 2.380 20 3.6713 71.15 28.85 0.9960 TYU5 连续 2.300 2.380 20 6.2355 47.10 52.90 0.9964 TYU6 连续 2.324 2.296 20 5.0453 41.85 58.15 0.9970 TYU7 连续 2.404 1.924 20 2.6729 39.95 60.05 0.9981 TYU8 连续 1.840 1.980 20 2.4032 20.00 80.00 0.9984 TYU9 连续 2.544 0.848 20 1.1443 28.35 71.65 0.9979 TYU10 连续 2.692 0.400 20 1.0331 17.00 83.00 0.9974 文献[7] 1-3# 间断 2.600 1.584 60 24.5036 58.00 42.00 0.9927 1-4# 间断 2.376 2.172 60 24.5033 43.50 56.50 0.9959 1-7# 间断 2.616 1.704 60 18.9698 66.05 33.95 0.9915 2-1# 间断 2.620 2.004 60 21.5590 65.00 35.00 0.9928 2-2# 间断 1.500 2.608 60 27.8484 16.05 83.95 0.9824 2-3# 间断 2.604 1.204 60 0.5987 76.00 24.00 0.9807 表 2 渭河粗粒土试样渗透系数实测值及计算值
Table 2 Measured and calculated values of permeability coefficient of coarse-grained soil samples from Weihe River
级配
编号渗透系数k/
(10-2cm·s-1)M(r<dc)MT/% 相对误差δ/% 试验
值计算
值[5]式(10)计算值 δ[5] δ式(10) TYU1 6.70 9.50 6.64 31.54 41.79 0.90 TYU2 4.50 7.90 4.71 31.74 75.56 4.67 TYU3 2.80 — 2.66 35.79 — 5.00 TYU4 2.40 5.20 2.48 41.54 116.67 3.33 TYU5 2.30 4.10 2.31 42.97 78.26 0.43 TYU6 2.10 3.00 1.86 48.13 42.86 11.43 TYU7 1.90 2.20 1.74 72.13 15.79 8.42 TYU8 1.00 1.50 1.35 81.95 50.00 35.00 TYU9 0.96 — 1.07 83.01 — 11.46 TYU10 0.88 — 0.77 92.16 — 12.50 注:相对误差δ=|k计算值-k实测值|/k实测值×100%。 表 3 砂岩粗粒料的渗透系数实测值与计算值
Table 3 Measured and calculated values of permeability coefficient of sandstone coarse-grained materials
级配
编号实测值 M(r<dc)MT/% 渗透系数计算值/(10-2 cm·s-1) 相对误差/% ρd/
(g·cm-3)k/
(10-2 cm·s-1)k式(11) kT kC k水科院 k杨志浩 δ式(11) δT δC δ水科院 δ杨志浩 1-3# 1.89 84.10 32.27 84.14 4.15 37.12 149.84 8.78 0.05 95.07 55.86 78.17 89.56 1-4# 1.91 60.71 32.10 60.39 20.45 143.42 138.75 15.62 0.53 66.32 136.24 128.55 74.27 1-7# 1.89 6.17 38.95 5.32 2.51 25.65 31.71 6.09 13.78 59.32 315.72 413.94 1.30 2-1#① 1.91 7.14 40.80 8.56 1.67 18.21 22.20 4.90 19.89 76.61 155.04 210.92 31.37 2-1#② 1.82 8.76 40.80 9.22 2.54 27.93 30.93 6.73 5.25 71.00 218.84 253.08 23.17 2-1#③ 1.74 10.64 40.80 10.04 3.50 39.91 40.39 8.79 5.64 67.11 275.09 279.61 17.39 2-2#① 1.91 0.79 50.08 0.75 0.90 8.80 0.89 2.32 5.06 13.92 1013.92 12.66 193.67 2-2#② 2.00 0.39 50.08 0.29 0.54 5.53 0.61 1.65 25.64 38.46 1317.95 56.41 323.08 2-2#③ 1.79 1.17 50.08 1.69 1.55 15.47 1.37 3.53 44.44 32.48 1222.22 17.09 201.71 2-3#① 1.91 0.59 56.83 0.58 0.67 5.17 0.50 1.32 1.69 13.56 776.27 15.25 123.73 2-3#② 2.00 0.11 56.83 0.11 0.40 3.25 0.34 0.94 0 263.64 2854.55 209.09 754.55 2-3#③ 1.81 0.90 56.83 1.33 1.06 8.30 0.72 1.87 47.78 17.78 822.22 20.00 107.78 -
[1] 土工试验规程: SL237-1999[S]. 北京: 中国水利水电出版社, 1999. SL237-1999 Specification of Soil Test: SL237-1999[S]. Beijing: China Water & Power Press, 1999. (in Chinese)
[2] 包孟碟, 朱俊高, 吴二鲁, 等. 基于级配方程的粗粒土渗透系数经验公式及其验证[J]. 岩土工程学报, 2020, 42(8): 1571-1576. doi: 10.11779/CJGE202008024 BAO Mengdie, ZHU Jungao, WU Erlu, et al. Empirical formula for permeability coefficient of coarse grained soil based on gradation equation and its verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1571-1576. (in Chinese) doi: 10.11779/CJGE202008024
[3] 郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1998. GUO Qingguo. Engineering characteristics and application of coarse-grained soil[M]. Zhengzhou: Yellow River Water Conservancy Press, 1998. (in Chinese)
[4] 杨志浩, 岳祖润, 冯怀平, 等. 重载铁路基床表层级配碎石渗透特性试验研究[J]. 岩土力学, 2021, 42(1): 193-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101022.htm YANG Zhihao, YUE Zurun, FENG Huaiping, et al. Experimental study of permeability properties of graded macadam in heavy haul railway subgrade bed surface layer[J]. Rock and Soil Mechanics, 2021, 42(1): 193-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101022.htm
[5] 朱崇辉. 粗粒土的渗透特性研究[D]. 杨凌: 西北农林科技大学, 2006. ZHU Chonghui. Study on the Coarse-Grained Soil Permeability Characteristic[D]. Yangling: Northwest A & F University, 2006. (in Chinese)
[6] 周中, 傅鹤林, 刘宝琛, 等. 土石混合体渗透性能的正交试验研究[J]. 岩土工程学报, 2006, 28(9): 1134-1138. http://cge.nhri.cn/cn/article/id/12168 ZHOU Zhong, FU Helin, LIU Baochen, et al. Orthogonal tests on permeability of soil-rock-mixture[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1134-1138. (in Chinese) http://cge.nhri.cn/cn/article/id/12168
[7] 刘黎. 粗粒料渗透特性及渗透规律试验研究[D]. 成都: 四川大学, 2006. LIU Li. Testing study on seepage property and seepage law of the coarse grain[D]. Chengdu: Sichuan University, 2006. (in Chinese)
[8] 黄达, 曾彬, 王庆乐. 粗粒土孔隙比及级配参数与渗透系数概率的相关性研究[J]. 水利学报, 2015, 46(8): 900-907. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201508003.htm HUANG Da, ZENG Bin, WANG Qingle. Study on probabilistic relation between permeability coefficient and void ratio and grain composition of coarse grained soils using Copula theory[J]. Journal of Hydraulic Engineering, 2015, 46(8): 900-907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201508003.htm
[9] 邵生俊, 李建军, 杨扶银. 粗粒土孔隙特征及其对泥浆渗透性的影响[J]. 岩土工程学报, 2009, 31(1): 59-65. doi: 10.3321/j.issn:1000-4548.2009.01.010 SHAO Shengjun, LI Jianjun, YANG Fuyin. Pore characteristics of coarse grained soil and their effect on slurry permeability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 59-65. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.01.010
[10] TERZAGHI K. Principles of soil mechanics: III. Determination of permeability of clay[J]. Engineering News Records, 1925, 95(21): 832–836.
[11] SHAHABI A A, DAS B M, TARQUIN A J. An empirical relation for coefficient of permeability of sand[C]// Proceedings of the 4th Australia-New Zealand conference on geomechanics. Perth, 1984: 54–57.
[12] CHAPUIS R P. Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio[J]. Canadian Geotechnical Journal, 2004, 41(5): 787-795.
[13] 刘杰. 土的渗透稳定与渗流控制[M]. 北京: 水利电力出版社, 1992. LIU Jie. Seepage stability and seepage control of soil[M]. Beijing: Chinese Water Conservancy and Electric Power Press, 1992. (in Chinese)
[14] TALBOT A, RICHART F E. The strength of concrete-its relation to the cement, aggregates and water[J]. Bulletin, Univ Illinois Eng Exp Station, 1923, 137: 1–118.
[15] SWAMEE P K, OJHA C S P. Bed-load and suspended-load transport of nonuniform sediments[J]. Journal of Hydraulic Engineering, 1991, 117(6): 774-787.
[16] 朱俊高, 郭万里, 王元龙, 等. 连续级配土的级配方程及其适用性研究[J]. 岩土工程学报, 2015, 37(10): 1931-1936. doi: 10.11779/CJGE201510023 ZHU Jungao, GUO Wanli, WANG Yuanlong, et al. Equation for soil gradation curve and its applicability[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1931-1936. (in Chinese) doi: 10.11779/CJGE201510023
[17] 于际都, 刘斯宏, 王涛, 等. 间断级配粗粒土压实特性试验研究[J]. 岩土工程学报, 2019, 41(11): 2142-2148. doi: 10.11779/CJGE201911021 YU Jidu, LIU Sihong, WANG Tao, et al. Experimental research on compaction characteristics of gap-graded coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2142-2148. (in Chinese) doi: 10.11779/CJGE201911021
[18] SHI X S, LIU K, YIN J H. Effect of initial density, particle shape, and confining stress on the critical state behavior of weathered gap-graded granular soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(2): 04020160.
[19] MANDELBROT B B. Fractial: form, chance and dimension [M]. San Francisco: W H Freeman and Company, 1977.
[20] TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.
[21] 谢和平. 分形几何及其在岩土力学中的应用[J]. 岩土工程学报, 1992, 14(1): 14-24. http://cge.nhri.cn/cn/article/id/9547 XIE Heping. Fractal geometry and its application to rock and soil materials[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 14-24. (in Chinese) http://cge.nhri.cn/cn/article/id/9547
[22] 王宝军, 施斌, 唐朝生. 基于GIS实现黏性土颗粒形态的三维分形研究[J]. 岩土工程学报, 2007, 29(2): 309-312. http://cge.nhri.cn/cn/article/id/12325 WANG Baojun, SHI Bin, TANG Chaosheng. Study on 3D fractal dimension of clayey soil by use of GIS[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 309-312. (in Chinese) http://cge.nhri.cn/cn/article/id/12325
[23] 徐永福. 考虑颗粒破碎影响的粗粒土的剪切强度理论[J]. 岩土工程学报, 2018, 40(7): 1171-1179. doi: 10.11779/CJGE201807002 XU Yongfu. Theory of shear strength of granular materials based on particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1171-1179. (in Chinese) doi: 10.11779/CJGE201807002
[24] 舒志乐, 刘新荣, 刘保县, 等. 土石混合体粒度分形特性及其与含石量和强度的关系[J]. 中南大学学报(自然科学版), 2010, 41(3): 1096-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003048.htm SHU Zhile, LIU Xinrong, LIU Baoxian, et al. Granule fractal properties of earth-rock aggregate and relationship between its gravel content and strength[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 1096-1101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003048.htm
[25] TAŞDEMIR A. Fractal evaluation of particle size distributions of chromites in different comminution environments[J]. Minerals Engineering, 2009, 22(2): 156-167.
[26] LIU X M, QU S Z, CHEN R P, et al. Development of a two-dimensional fractal model for analyzing the particle size distribution of geomaterials[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018175.
[27] KOZENY J. Üeber kapillare leitung des wassers im boden[J]. Akademie der Wissenechaften Wien, 1927, 136(2a): 271–306. (KOZENY J. Capillary line of water in soils[J]. Academy of Sciences, Vienna, 1927, 136(2a): 271–306. (in Germany))
[28] CARMAN P C. Fluid flow through granular beds[J]. Chemical Engineering Research and Design, 1997, 75: 32-48.
[29] CARRIER W D III. Goodbye, hazen; hello, kozeny-carman[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(11): 1054-1056.
[30] TAYLOR D W. Fundamentals of soil mechanics[J]. Soil Science, 1948, 66(2): 161.
[31] DOLZYK K, CHMIELEWSKA I. Predicting the coefficient of permeability of non-plastic soils[J]. Soil Mechanics and Foundation Engineering, 2014, 51(5): 213-218.
[32] 苏立君, 张宜健, 王铁行. 不同粒径级砂土渗透特性试验研究[J]. 岩土力学, 2014, 35(5): 1289-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405011.htm SU Lijun, ZHANG Yijian, WANG Tiexing. Investigation on permeability of sands with different particle sizes[J]. Rock and Soil Mechanics, 2014, 35(5): 1289-1294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405011.htm
-
期刊类型引用(9)
1. 孟凌霄,徐龙伟,王桂梅,姜润豪,孙湲惠,许英东,付涛. 接头形式与位置对装配式箱涵动力性能影响研究. 市政技术. 2024(06): 142-149 . 百度学术
2. 李国维,米帅奇,仇红超,吴建涛,李军,吴桂胜. 深埋盖板涵路基填土应力场分布特征试验研究. 岩石力学与工程学报. 2022(11): 2311-2319 . 百度学术
3. 王伟. 高速公路高填土路基病害及处理措施研究. 交通世界. 2021(Z2): 71-72 . 百度学术
4. 陶庆东,何兆益,贾颖. 结构参数与填料特性对盖板涵洞土涵作用影响. 地下空间与工程学报. 2021(02): 468-478 . 百度学术
5. 米帅奇,陈伟,苏彤,AGO Cadnel. 涵周土性状对高填方盖板涵涵顶应力影响分析. 粉煤灰综合利用. 2021(06): 34-40 . 百度学术
6. 陶庆东,何兆益,贾颖. 涵洞-填土-地基共同作用的涵洞减载效应研究. 三峡大学学报(自然科学版). 2020(05): 67-74 . 百度学术
7. 徐湉源,王明年,于丽. 高填方双层衬砌式明洞土压力和结构内力特性研究. 铁道学报. 2019(02): 146-153 . 百度学术
8. 赵立芳,段金辉. 混凝土盖板涵的施工要点. 黑龙江交通科技. 2019(08): 116-117 . 百度学术
9. 冯忠居,李少杰,郝宇萌,董芸秀,方元伟,胡海波,潘放,李军. 上埋式涵洞基础埋深效应下的地基承载力研究. 长江科学院院报. 2019(11): 83-90 . 百度学术
其他类型引用(11)
-
其他相关附件