Experimental study on dynamic characteristics of calcareous sand-gravel mixtures from islands in the South China Sea
-
摘要: 在南海岛礁实际建造工程中,上部吹填地基材料以大小砂砾共存、混杂无序的状态分布。地层中砂砾混合分布状态使地基在地震等动荷载下呈现出复杂的力学响应。通过开展一系列不同含砾量、密实度、围压和初始剪应力条件下的不排水循环三轴剪切试验,研究珊瑚砂砾混合料在不同工况下的动力特性。试验结果表明,无论是在松散还是密实状态,含有珊瑚砾的混合料试样在循环荷载下表现出更缓的轴向应变增长和孔隙水压上升的变化趋势。与单一珊瑚砂所构成的试样相比,珊瑚砂砾料试样具有更高的抗液化能力。珊瑚砂砾混合料抗液化强度随着含砾量、密实度和初始剪应力的增大而显著提高。密实珊瑚砂砾料的抗液化强度随围压的增大而减小,而针对松散试样没有发现明显规律,这可能是围压和密实度耦合影响引起的。试验结果表明含砾量对试样抗液化强度的影响主要受混合料骨架结构所控制,混合料骨架大致可分为粗颗粒(珊瑚砾)和细颗粒(珊瑚砂)结构主导两种状态。二元介质属性是开展砂砾混合料力学特性研究所必须考虑的影响因素。Abstract: In the construction process of reef islands in the South China Sea, the upper reclamation foundation materials exist in the form of a combination of large calcareous gravels and small calcareous sand mixed in random proportions. Such composition state makes the foundation exhibit complex mechanical properties under dynamic loads such as earthquakes. A series of undrained cyclic triaxial tests under different conditions of gravel content, relative density, confining pressure and initial shear stress are carried out to study the dynamic response of calcareous sand-gravel mixtures. The test results show that the mixtures display a lower axial strain growth and pore pressure rise rate than the pure calcareous sand under cyclic loading, regardless of loose and dense states. It indicates that the calcareous sand-gravel mixtures exhibit higher liquefaction resistance than the calcareous sands. The liquefaction resistance of the calcareous sand-gravel mixtures increases significantly with the gravel content, relative density and initial shear stress. In dense state, the liquefaction resistance of mixtures decreases with increasing confining pressure, but not for the loose samples, which probably relates to the coupled effects of the confining pressure and density. The effects of the gravel content on the liquefaction resistance of the calcareous sand-gravel mixtures are controlled by the grain skeleton structure. The grain-scale structure is dominated by coarse particles (calcareous gravel) or small particles (calcareous sand). The binary media characterization is an important factor for the study on mechanical properties for the calcareous sand-gravel mixtures.
-
-
表 1 珊瑚砂砾混合料基本参数
Table 1 Basic parameters of calcareous sand and gravel mixtures
材料 Gc/% d50/mm Cu emax emin 珊瑚砂 0 0.83 1.75 1.271 0.912 珊瑚砂砾料 10 0.89 2.07 1.234 0.893 20 0.97 2.14 1.214 0.877 30 1.11 2.54 1.195 0.869 40 1.35 5.59 1.239 0.953 表 2 珊瑚砂砾混合料不排水循环三轴试验工况
Table 2 Undrained cyclic triaxial test conditions of calcareous sand-gravel mixtures
序号 编号 Gc/% Dr /% σ′c /kPa Kc e0 CSR 1 T1-0-0.4-100 0 40 100 1 1.123 0.185 0.230 0.280 2 T1-0-0.4-200 0 40 200 1 1.123 0.185 0.230 0.280 3 T1-0-0.4-300 0 40 300 1 1.123 0.195 0.230 0.250 4 T1-0-0.5-100 0 50 100 1 1.086 0.200 0.300 0.400 5 T1-0-0.8-100 0 80 100 1 0.983 0.255 0.325 0.360 6 T1-0.1-0.4-100 10 40 100 1 1.094 0.210 0.250 0.290 7 T1-0.1-0.8-100 10 80 100 1 0.961 0.280 0.320 0.380 8 T1-0.2-0.4-50 20 40 50 1 1.076 0.190 0.240 0.300 9 T1-0.2-0.4-100 20 40 100 1 1.076 0.230 0.300 0.400 10 T1-0.2-0.4-200 20 40 200 1 1.076 0.250 0.300 0.350 11 T1-0.2-0.4-300 20 40 300 1 1.076 0.190 0.240 0.300 12 T1-0.2-0.65-100 20 65 100 1 0.995 0.240 0.300 0.400 13 T1-0.2-0.8-100 20 80 100 1 0.944 0.295 0.350 0.400 14 T1-0.2-0.8-200 20 40 200 1 0.944 0.300 0.350 0.390 15 T1-0.2-0.8-300 20 40 300 1 0.944 0.295 0.340 0.400 16 T1-0.3-0.4-100 30 40 100 1 1.061 0.300 0.240 0.350 17 T1-0.4-0.4-100 40 40 100 1 1.122 0.270 0.300 0.345 18 T1.27-0.2-0.4-100 20 40 91.7 1.27 1.076 0.300 0.350 0.400 19 T2-0.2-0.4-100 20 40 75 2 1.076 0.460 0.590 0.650 -
[1] 丁选明, 吴琪, 刘汉龙, 等. 建筑物下珊瑚砂地基动力响应振动台模型试验研究[J]. 岩土工程学报, 2019, 41(8): 1408-1417. doi: 10.11779/CJGE201908004 DING Xuanming, WU Qi, LIU Hanlong, et al. Shaking table tests on dynamic response of coral sand foundation under buildings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1408-1417. (in Chinese) doi: 10.11779/CJGE201908004
[2] 李飒, 刘富诗, 戴旭, 等. 不同碳酸钙含量砂土的工程特性研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3271-3278. LI Sa, LIU Fushi, DAI Xu, et al. Study on engineering properties of sand with different calcium carbonate contents[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3271-3278. (in Chinese)
[3] 吴琪, 杨铮涛, 刘抗, 等. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究[J]. 岩土工程学报, 2022, 44(8): 1386-1396. doi: 10.11779/CJGE202208003 WU Qi, YANG Zhengtao, LIU Kang, et al. Experimental study on influences of fines content on dynamic deformation characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1386-1396. (in Chinese) doi: 10.11779/CJGE202208003
[4] 吴杨, 崔杰, 李晨, 等. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究[J]. 岩石力学与工程学报, 2022, 41(1): 205-216. WU Yang, CUI Jie, LI Chen, et al. Experimental study on the effect of fines on the maximum dynamic shear modulus of coral sand in a hydraulic fill island-reef[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 205-216. (in Chinese)
[5] 吴杨, 崔杰, 李能, 等. 岛礁吹填珊瑚砂力学行为与颗粒破碎特性试验研究[J]. 岩土力学, 2020, 41(10): 3181-3191. WU Yang, CUI Jie, LI Neng, et al. Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the South China Sea[J]. Rock and Soil Mechanics, 2020, 41(10): 3181-3191. (in Chinese)
[6] 阮爱国, 臧宏. 南海海盆地震活动性监测与研究[C]// 2020年中国地球科学联合学术年会. 重庆, 2020: 41-43. RUAN Aiguo, ZANG Hong. Monitoring and Research on Seismicity in the South China Sea Basin[C]// Proceedings of the 2020 China Geosciences Joint Academic Annual Conference. Chongqing, 2020: 41-43. (in Chinese)
[7] 曹振中, 袁晓铭. 砾性土液化原理与判别技术: 以汶川8.0级地震为背景[M]. 科学出版社, 2015. CAO Zhenzhong, YUAN Xiaoming. Liquefaction principle and discrimination technology of gravel soil: in the context of the Wenchuan M8.0 earthquake[M]. Science Press, 2015. (in Chinese)
[8] TOWHATA I. Geotechnical Earthquake Engineering[M]. Berlin: Springer Berlin Heidelberg, 2008.
[9] 王鸾, 汪云龙, 袁晓铭, 等. 人工场地吹填珊瑚土抗液化强度大粒径动三轴试验研究[J]. 岩土力学, 2021, 42(10): 2819-2829. WANG Luan, WANG Yunlong, YUAN Xiaoming, et al. Experimental study on liquefaction resistance of hydraulic fill coralline soils at artificial sites based on large-scale dynamic triaxial apparatus[J]. Rock and Soil Mechanics, 2021, 42(10): 2819-2829. (in Chinese)
[10] 袁晓铭, 张文彬, 段志刚, 等. 珊瑚土工程场地地震液化特征解析[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3799-3811. YUAN Xiaoming, ZHANG Wenbin, DUAN Zhigang, et al. Analysis for characteristics of seismic liquefaction in engineering sites of coralline soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3799-3811. (in Chinese)
[11] ISHIHARA K. Stability of natural deposits during earthquakes[C]// Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985
[12] HAGA K. Shaking Table Tests for Liquefaction of Gravel-Containing Sand[D]. Tokyo: University of Tokyo Department of Civil Engineering, 1984. (in Japanese)
[13] FLORA A, LIRER S, SILVESTRI F. Undrained cyclic resistance of undisturbed gravelly soils[J]. Soil Dynamics and Earthquake Engineering, 2012, 43: 366-379. doi: 10.1016/j.soildyn.2012.08.003
[14] TOYOTA H, TAKADA S. Effects of gravel content on liquefaction resistance and its assessment considering deformation characteristics in gravel–mixed sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1743-1755. doi: 10.1139/cgj-2018-0575
[15] 王昆耀, 常亚屏, 陈宁. 饱和砂砾料液化特性的试验研究[J]. 水利学报, 2000, 31(2): 37-41. WANG Kunyao, CHANG Yaping, CHEN Ning. Experimental study on liquefaction characteristics of saturated sandy gravel[J]. Journal of Hydraulic Engineering, 2000, 31(2): 37-41. (in Chinese)
[16] KOKUSHO T, HARA T, HIRAOKA R. Undrained shear strength of granular soils with different particle gradations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 621-629. doi: 10.1061/(ASCE)1090-0241(2004)130:6(621)
[17] XENAKI V C, ATHANASOPOULOS G A. Dynamic properties and liquefaction resistance of two soil materials in an earthfill dam—laboratory test results[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(8): 605-620. doi: 10.1016/j.soildyn.2007.10.001
[18] FRAGASZY R J, SU J, SIDDIQI F H, et al. Modeling strength of sandy gravel[J]. Journal of Geotechnical Engineering, 1992, 118(6): 920-935. doi: 10.1061/(ASCE)0733-9410(1992)118:6(920)
[19] CHANG W J, CHANG C W, ZENG J K. Liquefaction characteristics of gap-graded gravelly soils in K0 condition[J]. Soil Dynamics and Earthquake Engineering, 2014, 56: 74-85. doi: 10.1016/j.soildyn.2013.10.005
[20] EVANS M D, ZHOU S P. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298. doi: 10.1061/(ASCE)0733-9410(1995)121:3(287)
[21] Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table: ASTM D4253-16[S]. ASTM International, 2016.
[22] Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density: ASTM D4254-16[S]. ASTM International, 2016.
[23] 刘荟达. 砾性土抗液化强度与三轴试验关键问题研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2020. LIU Huida. Research on Gravelly Soils Liquefaction Resistance and Several Crucial Problems of Triaxial Test[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2020. (in Chinese)
[24] NICHOLSON P G, SEED R B, ANWAR H A. Elimination of membrane compliance in undrained triaxial testing. I. Measurement and evaluation[J]. Canadian Geotechnical Journal, 1993, 30(5): 727-738. doi: 10.1139/t93-065
[25] 徐卫卫, 陈生水, 傅中志, 等. 粗粒土三轴试验橡皮膜嵌入量测量方法研究[J]. 岩土工程学报, 2021, 43(8): 1536-1541. doi: 10.11779/CJGE202108019 XU Weiwei, CHEN Shengshui, FU Zhongzhi, et al. Measuring method for membrane penetration capacity of coarse-grained soil in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1536-1541. (in Chinese) doi: 10.11779/CJGE202108019
[26] YANG J, SZE H Y. Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions[J]. Géotechnique, 2011, 61(1): 59-73. doi: 10.1680/geot.9.P.019
[27] ISHIHARA K. Soil behaviour in earthquake geotechnics[M]. New York: Oxford University Press, 1996.
[28] 孔宪京, 徐斌. 饱和砂砾料液化特性试验研究[C]//第一届中国水利水电岩土力学与工程学术讨论会. 昆明, 2006: 49-53. KONG Xianjing, XU Bin. Experimental study on liquefaction characteristics of saturated sand and gravel materials[C]// Proceedings of the 1st China Water Conservancy and Hydropower Geomechanics and Engineering. Kunming, 2006. (in Chinese)
[29] HYODO M, HYDE A, ARAMAKI N. Liquefaction of crushable soils[J]. Géotechnique, 1998, 48(4): 527-543. doi: 10.1680/geot.1998.48.4.527
[30] ZHOU X Z, STUEDLEIN A W, CHEN Y M, et al. Cyclic response of loose anisotropically consolidated calcareous sand under progressive wave-induced elliptical stress paths[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 04020143. doi: 10.1061/(ASCE)GT.1943-5606.0002422
-
其他相关附件