Citation: | WU Yang, WU Yihang, MA Linjian, CUI Jie, LIU Jiankun, DAI Beibing. Experimental study on dynamic characteristics of calcareous sand-gravel mixtures from islands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 63-71. DOI: 10.11779/CJGE20221161 |
[1] |
丁选明, 吴琪, 刘汉龙, 等. 建筑物下珊瑚砂地基动力响应振动台模型试验研究[J]. 岩土工程学报, 2019, 41(8): 1408-1417. doi: 10.11779/CJGE201908004
DING Xuanming, WU Qi, LIU Hanlong, et al. Shaking table tests on dynamic response of coral sand foundation under buildings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1408-1417. (in Chinese) doi: 10.11779/CJGE201908004
|
[2] |
李飒, 刘富诗, 戴旭, 等. 不同碳酸钙含量砂土的工程特性研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3271-3278.
LI Sa, LIU Fushi, DAI Xu, et al. Study on engineering properties of sand with different calcium carbonate contents[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3271-3278. (in Chinese)
|
[3] |
吴琪, 杨铮涛, 刘抗, 等. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究[J]. 岩土工程学报, 2022, 44(8): 1386-1396. doi: 10.11779/CJGE202208003
WU Qi, YANG Zhengtao, LIU Kang, et al. Experimental study on influences of fines content on dynamic deformation characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1386-1396. (in Chinese) doi: 10.11779/CJGE202208003
|
[4] |
吴杨, 崔杰, 李晨, 等. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究[J]. 岩石力学与工程学报, 2022, 41(1): 205-216.
WU Yang, CUI Jie, LI Chen, et al. Experimental study on the effect of fines on the maximum dynamic shear modulus of coral sand in a hydraulic fill island-reef[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 205-216. (in Chinese)
|
[5] |
吴杨, 崔杰, 李能, 等. 岛礁吹填珊瑚砂力学行为与颗粒破碎特性试验研究[J]. 岩土力学, 2020, 41(10): 3181-3191.
WU Yang, CUI Jie, LI Neng, et al. Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the South China Sea[J]. Rock and Soil Mechanics, 2020, 41(10): 3181-3191. (in Chinese)
|
[6] |
阮爱国, 臧宏. 南海海盆地震活动性监测与研究[C]// 2020年中国地球科学联合学术年会. 重庆, 2020: 41-43.
RUAN Aiguo, ZANG Hong. Monitoring and Research on Seismicity in the South China Sea Basin[C]// Proceedings of the 2020 China Geosciences Joint Academic Annual Conference. Chongqing, 2020: 41-43. (in Chinese)
|
[7] |
曹振中, 袁晓铭. 砾性土液化原理与判别技术: 以汶川8.0级地震为背景[M]. 科学出版社, 2015.
CAO Zhenzhong, YUAN Xiaoming. Liquefaction principle and discrimination technology of gravel soil: in the context of the Wenchuan M8.0 earthquake[M]. Science Press, 2015. (in Chinese)
|
[8] |
TOWHATA I. Geotechnical Earthquake Engineering[M]. Berlin: Springer Berlin Heidelberg, 2008.
|
[9] |
王鸾, 汪云龙, 袁晓铭, 等. 人工场地吹填珊瑚土抗液化强度大粒径动三轴试验研究[J]. 岩土力学, 2021, 42(10): 2819-2829.
WANG Luan, WANG Yunlong, YUAN Xiaoming, et al. Experimental study on liquefaction resistance of hydraulic fill coralline soils at artificial sites based on large-scale dynamic triaxial apparatus[J]. Rock and Soil Mechanics, 2021, 42(10): 2819-2829. (in Chinese)
|
[10] |
袁晓铭, 张文彬, 段志刚, 等. 珊瑚土工程场地地震液化特征解析[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3799-3811.
YUAN Xiaoming, ZHANG Wenbin, DUAN Zhigang, et al. Analysis for characteristics of seismic liquefaction in engineering sites of coralline soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3799-3811. (in Chinese)
|
[11] |
ISHIHARA K. Stability of natural deposits during earthquakes[C]// Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985
|
[12] |
HAGA K. Shaking Table Tests for Liquefaction of Gravel-Containing Sand[D]. Tokyo: University of Tokyo Department of Civil Engineering, 1984. (in Japanese)
|
[13] |
FLORA A, LIRER S, SILVESTRI F. Undrained cyclic resistance of undisturbed gravelly soils[J]. Soil Dynamics and Earthquake Engineering, 2012, 43: 366-379. doi: 10.1016/j.soildyn.2012.08.003
|
[14] |
TOYOTA H, TAKADA S. Effects of gravel content on liquefaction resistance and its assessment considering deformation characteristics in gravel–mixed sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1743-1755. doi: 10.1139/cgj-2018-0575
|
[15] |
王昆耀, 常亚屏, 陈宁. 饱和砂砾料液化特性的试验研究[J]. 水利学报, 2000, 31(2): 37-41.
WANG Kunyao, CHANG Yaping, CHEN Ning. Experimental study on liquefaction characteristics of saturated sandy gravel[J]. Journal of Hydraulic Engineering, 2000, 31(2): 37-41. (in Chinese)
|
[16] |
KOKUSHO T, HARA T, HIRAOKA R. Undrained shear strength of granular soils with different particle gradations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 621-629. doi: 10.1061/(ASCE)1090-0241(2004)130:6(621)
|
[17] |
XENAKI V C, ATHANASOPOULOS G A. Dynamic properties and liquefaction resistance of two soil materials in an earthfill dam—laboratory test results[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(8): 605-620. doi: 10.1016/j.soildyn.2007.10.001
|
[18] |
FRAGASZY R J, SU J, SIDDIQI F H, et al. Modeling strength of sandy gravel[J]. Journal of Geotechnical Engineering, 1992, 118(6): 920-935. doi: 10.1061/(ASCE)0733-9410(1992)118:6(920)
|
[19] |
CHANG W J, CHANG C W, ZENG J K. Liquefaction characteristics of gap-graded gravelly soils in K0 condition[J]. Soil Dynamics and Earthquake Engineering, 2014, 56: 74-85. doi: 10.1016/j.soildyn.2013.10.005
|
[20] |
EVANS M D, ZHOU S P. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298. doi: 10.1061/(ASCE)0733-9410(1995)121:3(287)
|
[21] |
Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table: ASTM D4253-16[S]. ASTM International, 2016.
|
[22] |
Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density: ASTM D4254-16[S]. ASTM International, 2016.
|
[23] |
刘荟达. 砾性土抗液化强度与三轴试验关键问题研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2020.
LIU Huida. Research on Gravelly Soils Liquefaction Resistance and Several Crucial Problems of Triaxial Test[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2020. (in Chinese)
|
[24] |
NICHOLSON P G, SEED R B, ANWAR H A. Elimination of membrane compliance in undrained triaxial testing. I. Measurement and evaluation[J]. Canadian Geotechnical Journal, 1993, 30(5): 727-738. doi: 10.1139/t93-065
|
[25] |
徐卫卫, 陈生水, 傅中志, 等. 粗粒土三轴试验橡皮膜嵌入量测量方法研究[J]. 岩土工程学报, 2021, 43(8): 1536-1541. doi: 10.11779/CJGE202108019
XU Weiwei, CHEN Shengshui, FU Zhongzhi, et al. Measuring method for membrane penetration capacity of coarse-grained soil in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1536-1541. (in Chinese) doi: 10.11779/CJGE202108019
|
[26] |
YANG J, SZE H Y. Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions[J]. Géotechnique, 2011, 61(1): 59-73. doi: 10.1680/geot.9.P.019
|
[27] |
ISHIHARA K. Soil behaviour in earthquake geotechnics[M]. New York: Oxford University Press, 1996.
|
[28] |
孔宪京, 徐斌. 饱和砂砾料液化特性试验研究[C]//第一届中国水利水电岩土力学与工程学术讨论会. 昆明, 2006: 49-53.
KONG Xianjing, XU Bin. Experimental study on liquefaction characteristics of saturated sand and gravel materials[C]// Proceedings of the 1st China Water Conservancy and Hydropower Geomechanics and Engineering. Kunming, 2006. (in Chinese)
|
[29] |
HYODO M, HYDE A, ARAMAKI N. Liquefaction of crushable soils[J]. Géotechnique, 1998, 48(4): 527-543. doi: 10.1680/geot.1998.48.4.527
|
[30] |
ZHOU X Z, STUEDLEIN A W, CHEN Y M, et al. Cyclic response of loose anisotropically consolidated calcareous sand under progressive wave-induced elliptical stress paths[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 04020143. doi: 10.1061/(ASCE)GT.1943-5606.0002422
|