• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Yang, WU Yihang, MA Linjian, CUI Jie, LIU Jiankun, DAI Beibing. Experimental study on dynamic characteristics of calcareous sand-gravel mixtures from islands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 63-71. DOI: 10.11779/CJGE20221161
Citation: WU Yang, WU Yihang, MA Linjian, CUI Jie, LIU Jiankun, DAI Beibing. Experimental study on dynamic characteristics of calcareous sand-gravel mixtures from islands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 63-71. DOI: 10.11779/CJGE20221161

Experimental study on dynamic characteristics of calcareous sand-gravel mixtures from islands in the South China Sea

More Information
  • Received Date: September 19, 2022
  • Available Online: March 13, 2023
  • In the construction process of reef islands in the South China Sea, the upper reclamation foundation materials exist in the form of a combination of large calcareous gravels and small calcareous sand mixed in random proportions. Such composition state makes the foundation exhibit complex mechanical properties under dynamic loads such as earthquakes. A series of undrained cyclic triaxial tests under different conditions of gravel content, relative density, confining pressure and initial shear stress are carried out to study the dynamic response of calcareous sand-gravel mixtures. The test results show that the mixtures display a lower axial strain growth and pore pressure rise rate than the pure calcareous sand under cyclic loading, regardless of loose and dense states. It indicates that the calcareous sand-gravel mixtures exhibit higher liquefaction resistance than the calcareous sands. The liquefaction resistance of the calcareous sand-gravel mixtures increases significantly with the gravel content, relative density and initial shear stress. In dense state, the liquefaction resistance of mixtures decreases with increasing confining pressure, but not for the loose samples, which probably relates to the coupled effects of the confining pressure and density. The effects of the gravel content on the liquefaction resistance of the calcareous sand-gravel mixtures are controlled by the grain skeleton structure. The grain-scale structure is dominated by coarse particles (calcareous gravel) or small particles (calcareous sand). The binary media characterization is an important factor for the study on mechanical properties for the calcareous sand-gravel mixtures.
  • [1]
    丁选明, 吴琪, 刘汉龙, 等. 建筑物下珊瑚砂地基动力响应振动台模型试验研究[J]. 岩土工程学报, 2019, 41(8): 1408-1417. doi: 10.11779/CJGE201908004

    DING Xuanming, WU Qi, LIU Hanlong, et al. Shaking table tests on dynamic response of coral sand foundation under buildings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1408-1417. (in Chinese) doi: 10.11779/CJGE201908004
    [2]
    李飒, 刘富诗, 戴旭, 等. 不同碳酸钙含量砂土的工程特性研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3271-3278.

    LI Sa, LIU Fushi, DAI Xu, et al. Study on engineering properties of sand with different calcium carbonate contents[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3271-3278. (in Chinese)
    [3]
    吴琪, 杨铮涛, 刘抗, 等. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究[J]. 岩土工程学报, 2022, 44(8): 1386-1396. doi: 10.11779/CJGE202208003

    WU Qi, YANG Zhengtao, LIU Kang, et al. Experimental study on influences of fines content on dynamic deformation characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1386-1396. (in Chinese) doi: 10.11779/CJGE202208003
    [4]
    吴杨, 崔杰, 李晨, 等. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究[J]. 岩石力学与工程学报, 2022, 41(1): 205-216.

    WU Yang, CUI Jie, LI Chen, et al. Experimental study on the effect of fines on the maximum dynamic shear modulus of coral sand in a hydraulic fill island-reef[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 205-216. (in Chinese)
    [5]
    吴杨, 崔杰, 李能, 等. 岛礁吹填珊瑚砂力学行为与颗粒破碎特性试验研究[J]. 岩土力学, 2020, 41(10): 3181-3191.

    WU Yang, CUI Jie, LI Neng, et al. Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the South China Sea[J]. Rock and Soil Mechanics, 2020, 41(10): 3181-3191. (in Chinese)
    [6]
    阮爱国, 臧宏. 南海海盆地震活动性监测与研究[C]// 2020年中国地球科学联合学术年会. 重庆, 2020: 41-43.

    RUAN Aiguo, ZANG Hong. Monitoring and Research on Seismicity in the South China Sea Basin[C]// Proceedings of the 2020 China Geosciences Joint Academic Annual Conference. Chongqing, 2020: 41-43. (in Chinese)
    [7]
    曹振中, 袁晓铭. 砾性土液化原理与判别技术: 以汶川8.0级地震为背景[M]. 科学出版社, 2015.

    CAO Zhenzhong, YUAN Xiaoming. Liquefaction principle and discrimination technology of gravel soil: in the context of the Wenchuan M8.0 earthquake[M]. Science Press, 2015. (in Chinese)
    [8]
    TOWHATA I. Geotechnical Earthquake Engineering[M]. Berlin: Springer Berlin Heidelberg, 2008.
    [9]
    王鸾, 汪云龙, 袁晓铭, 等. 人工场地吹填珊瑚土抗液化强度大粒径动三轴试验研究[J]. 岩土力学, 2021, 42(10): 2819-2829.

    WANG Luan, WANG Yunlong, YUAN Xiaoming, et al. Experimental study on liquefaction resistance of hydraulic fill coralline soils at artificial sites based on large-scale dynamic triaxial apparatus[J]. Rock and Soil Mechanics, 2021, 42(10): 2819-2829. (in Chinese)
    [10]
    袁晓铭, 张文彬, 段志刚, 等. 珊瑚土工程场地地震液化特征解析[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3799-3811.

    YUAN Xiaoming, ZHANG Wenbin, DUAN Zhigang, et al. Analysis for characteristics of seismic liquefaction in engineering sites of coralline soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3799-3811. (in Chinese)
    [11]
    ISHIHARA K. Stability of natural deposits during earthquakes[C]// Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985
    [12]
    HAGA K. Shaking Table Tests for Liquefaction of Gravel-Containing Sand[D]. Tokyo: University of Tokyo Department of Civil Engineering, 1984. (in Japanese)
    [13]
    FLORA A, LIRER S, SILVESTRI F. Undrained cyclic resistance of undisturbed gravelly soils[J]. Soil Dynamics and Earthquake Engineering, 2012, 43: 366-379. doi: 10.1016/j.soildyn.2012.08.003
    [14]
    TOYOTA H, TAKADA S. Effects of gravel content on liquefaction resistance and its assessment considering deformation characteristics in gravel–mixed sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1743-1755. doi: 10.1139/cgj-2018-0575
    [15]
    王昆耀, 常亚屏, 陈宁. 饱和砂砾料液化特性的试验研究[J]. 水利学报, 2000, 31(2): 37-41.

    WANG Kunyao, CHANG Yaping, CHEN Ning. Experimental study on liquefaction characteristics of saturated sandy gravel[J]. Journal of Hydraulic Engineering, 2000, 31(2): 37-41. (in Chinese)
    [16]
    KOKUSHO T, HARA T, HIRAOKA R. Undrained shear strength of granular soils with different particle gradations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 621-629. doi: 10.1061/(ASCE)1090-0241(2004)130:6(621)
    [17]
    XENAKI V C, ATHANASOPOULOS G A. Dynamic properties and liquefaction resistance of two soil materials in an earthfill dam—laboratory test results[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(8): 605-620. doi: 10.1016/j.soildyn.2007.10.001
    [18]
    FRAGASZY R J, SU J, SIDDIQI F H, et al. Modeling strength of sandy gravel[J]. Journal of Geotechnical Engineering, 1992, 118(6): 920-935. doi: 10.1061/(ASCE)0733-9410(1992)118:6(920)
    [19]
    CHANG W J, CHANG C W, ZENG J K. Liquefaction characteristics of gap-graded gravelly soils in K0 condition[J]. Soil Dynamics and Earthquake Engineering, 2014, 56: 74-85. doi: 10.1016/j.soildyn.2013.10.005
    [20]
    EVANS M D, ZHOU S P. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298. doi: 10.1061/(ASCE)0733-9410(1995)121:3(287)
    [21]
    Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table: ASTM D4253-16[S]. ASTM International, 2016.
    [22]
    Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density: ASTM D4254-16[S]. ASTM International, 2016.
    [23]
    刘荟达. 砾性土抗液化强度与三轴试验关键问题研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2020.

    LIU Huida. Research on Gravelly Soils Liquefaction Resistance and Several Crucial Problems of Triaxial Test[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2020. (in Chinese)
    [24]
    NICHOLSON P G, SEED R B, ANWAR H A. Elimination of membrane compliance in undrained triaxial testing. I. Measurement and evaluation[J]. Canadian Geotechnical Journal, 1993, 30(5): 727-738. doi: 10.1139/t93-065
    [25]
    徐卫卫, 陈生水, 傅中志, 等. 粗粒土三轴试验橡皮膜嵌入量测量方法研究[J]. 岩土工程学报, 2021, 43(8): 1536-1541. doi: 10.11779/CJGE202108019

    XU Weiwei, CHEN Shengshui, FU Zhongzhi, et al. Measuring method for membrane penetration capacity of coarse-grained soil in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1536-1541. (in Chinese) doi: 10.11779/CJGE202108019
    [26]
    YANG J, SZE H Y. Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions[J]. Géotechnique, 2011, 61(1): 59-73. doi: 10.1680/geot.9.P.019
    [27]
    ISHIHARA K. Soil behaviour in earthquake geotechnics[M]. New York: Oxford University Press, 1996.
    [28]
    孔宪京, 徐斌. 饱和砂砾料液化特性试验研究[C]//第一届中国水利水电岩土力学与工程学术讨论会. 昆明, 2006: 49-53.

    KONG Xianjing, XU Bin. Experimental study on liquefaction characteristics of saturated sand and gravel materials[C]// Proceedings of the 1st China Water Conservancy and Hydropower Geomechanics and Engineering. Kunming, 2006. (in Chinese)
    [29]
    HYODO M, HYDE A, ARAMAKI N. Liquefaction of crushable soils[J]. Géotechnique, 1998, 48(4): 527-543. doi: 10.1680/geot.1998.48.4.527
    [30]
    ZHOU X Z, STUEDLEIN A W, CHEN Y M, et al. Cyclic response of loose anisotropically consolidated calcareous sand under progressive wave-induced elliptical stress paths[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 04020143. doi: 10.1061/(ASCE)GT.1943-5606.0002422

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return