• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同粒径比下含细颗粒砂土液化特性的试验研究

左康乐, 顾晓强

左康乐, 顾晓强. 不同粒径比下含细颗粒砂土液化特性的试验研究[J]. 岩土工程学报, 2023, 45(7): 1461-1470. DOI: 10.11779/CJGE20220401
引用本文: 左康乐, 顾晓强. 不同粒径比下含细颗粒砂土液化特性的试验研究[J]. 岩土工程学报, 2023, 45(7): 1461-1470. DOI: 10.11779/CJGE20220401
ZUO Kangle, GU Xiaoqiang. Experimental study on liquefaction characteristics of sand with fines under different particle size ratios[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1461-1470. DOI: 10.11779/CJGE20220401
Citation: ZUO Kangle, GU Xiaoqiang. Experimental study on liquefaction characteristics of sand with fines under different particle size ratios[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1461-1470. DOI: 10.11779/CJGE20220401

不同粒径比下含细颗粒砂土液化特性的试验研究  English Version

基金项目: 

国家自然科学基金项目 41772283

中央高校基本科研业务费专项资金项目 

详细信息
    作者简介:

    左康乐(1995—),男,安徽枞阳人,博士研究生,主要从事砂土液化方面的研究工作。E-mail:zuokangle@tongji.edu.cn

    通讯作者:

    顾晓强, E-mail: guxiaoqiang@tongji.edu.cn

  • 中图分类号: TU435

Experimental study on liquefaction characteristics of sand with fines under different particle size ratios

  • 摘要: 利用带有弯曲元的GDS动三轴仪,对3种不同粒径比下含细粒砂土进行不排水循环三轴和弯曲元试验,分析了细颗粒含量、密实度、初始有效围压、制样方法以及粗细颗粒粒径比对砂土液化特性的影响,探讨了等效骨架孔隙比e*能否合理统一表征不同初始状态以及不同粒径比下含细粒砂土的抗液化强度。研究结果表明:等效骨架孔隙比e*可以合理解释低塑性粉粒含量对各种砂性土抗液化强度CRR15和小应变剪切模量G0的影响,两者均呈负幂数关系,且G0通过e*与CRR15呈现一一对应关系,为含细颗粒砂土液化判别提供了一种新的经验性方法。其次,通过e*表征砂性土抗液化强度时应当考虑初始围压和制样方法的影响,特别对于孔隙比较小和细颗粒含量较低时。粒径比χ在小于9.9时对CRR15e*的关系影响较大,而当χ大于9.9时,关系曲线几乎重合一致,且发现等效相对密实度Dr*与3种砂性土的抗液化强度呈单调递增线性关系,不受细颗粒含量和粒径比的影响。
    Abstract: A series of undrained cyclic triaxial and bender element tests are carried out on sandy soils with three different particle size ratios by using the GDS cyclic triaxial apparatus with bender elements. The effects of fines content, density, initial effective confining pressure, sample preparation method and particle size ratio on liquefaction characteristics of sandy soils are analyzed. Whether the equivalent skeleton void ratio e* can reasonably and uniformly characterize the liquefaction resistance of the sandy soils under different initial states and different particle size ratios is discussed. The results show that e* can reasonably quantify the influences of low plastic fines content on liquefaction resistance CRR15 of various sandy soils, showing a negative idempotent relationship between CRR15 and e*. There is also a unique relationship between small strain shear modulus G0 and e*, which indicates a unique relationship between CRR15 and G0. It provides a new empirical method for the evaluation of liquefaction resistance of the sandy soils. Meanwhile, the influences of the initial confining pressure and sample preparation method should be considered when e* is used to characterize the liquefaction resistance, especially for smaller void ratio and fines content. When it is less than 9.9, the particle size ratio χ has a great influence on the relationship between CRR15 and e*, while it has a negligible effect when it is greater than 9.9. It is found that there is a unique relationship between equivalent relative density Dr* and CRR15 for the tested three sandy soils, despite of the fines content and particle size ratio.
  • 随着一带一路和海洋强国战略的逐步实施,珊瑚岛礁已成为保卫祖国领海完整和维护海洋权益的基地。珊瑚砂广泛分布于我国南海海域,是岛礁建设的主要材料,珊瑚砂特殊的发育环境、物质组成及结构导致其具有独特的物理力学性质[1]。珊瑚砂的碳酸钙含量极高,以方解石和文石的形式存在,与陆源石英砂相比,其具有低强度、高孔隙比、形状不规则、易破碎、颗粒易胶结等特殊工程性质,使得其受力变形特性与普通陆源石英砂差别较大。南海岛礁及其国防与民用工程设施建设受台风、涨潮、退潮、地震等动荷载影响较大,因此,研究珊瑚砂的动力参数对其动力特性研究具有重要意义。

    小应变幅值条件下,在风、浪、流及地震等动荷载作用下的动力响应分析是港口、码头及近海建筑物受力变形研究的重点,动剪切模量和阻尼比是动力响应分析中的两个重要参数。关于小应变幅值条件下动剪切模量和阻尼比的研究多集中于砂土[2-4]、红黏土[5]、尾矿砂[6]、黄土[7]、混凝土[8]等。众多研究成果表明,小应变条件下,干砂在不同应力水平条件下的最大剪切模量和阻尼比为常数,但同一应力水平条件下的试样在饱和状态时由于Biot流导致其阻尼比与干试样不同[2]。西澳大利亚生物成因砂在各向异性应力路径条件下的试验研究表明,小应变条件下的最大剪切模量和阻尼比取决于试样的应力比[3]。德国四种干砂试样的共振柱与弯曲元对比试验发现,最大剪切模量与围压和孔隙比的定性关系相同,随围压的增大而增大,随孔隙比的增大而减小,但弯曲元试验中,最大剪切模量随脉冲频率减小而减小,其影响程度随围压增大而减小,衰减程度与砂土的类型有关[4]。红黏土的动剪切模量与动剪应变的关系曲线随着围压的增大逐渐趋于“直线”关系,动剪切模量衰减较慢,重塑红黏土的压实度较高,颗粒间接触面积大、触点多,应力波在土体中传播速度更快、更深,能量衰减较小,其阻尼比较其他类型土体小[5]。尾矿砂的最大动剪切模量随固结压力和干密度的增大而增大,随含水率的增大而减小;最大阻尼比随固结压力和干密度的增大而减小,但对含水率的变化不太敏感[6]。压实非饱和黄土干湿循环过程中,最大剪切模量随基质吸力的增大而增大,再随吸力的减小而减小,而在同一吸力作用下,湿润段的最大剪切模量大于干燥段[7]

    目前对珊瑚砂小应变幅值条件下的动力特性研究较少,本文通过开展共振柱试验来研究小应变幅值条件下珊瑚砂的最大剪切模量和阻尼比两个动力参数,进而分析研究相对密实度和围压等因素影响下的珊瑚砂最大剪切模量和阻尼比的变化规律,以求为我国南海岛礁建设的动力响应分析提供参考和依据。

    本文试验采用由美国GCTS公司生产的TSH-100型共振柱仪(如图1),该仪器为一端固定一端自由型共振柱。共振柱试验系统包括激振系统、量测系统和试样容器,其中激振系统由扭转激振力和轴向激振力组成,量测系统由位移、速度、加速度及记录设备等组成,试样容器包括压力室、底座、制样设备、加压系统、固结排水系统等。该仪器所能测量的应变范围为10-6~10-4,最大围压为500 kPa,试样尺寸为Ф50 mm×100 mm。

    图  1  TSH-100型共振柱仪
    Figure  1.  TSH-100 resonant column equipment

    仪器振动系统的质量-阻尼-弹簧特性和试样的质量-阻尼-弹簧特性将共同影响试验结果,因此试验前需对试验仪器各部件的特征常数进行标定,以对计算结果作相应修正。仪器标定时将标定杆替代试样固定在试样底座上,安装好上压板、传感器、激振器和驱动板,由激振器施加激振力,连续改变频率直至系统发生共振,测定标定杆的共振频率。然后,将配重块安装在标定杆上,以同样的方法测定标定杆加配重块的共振频率。根据该二共振频率及标定杆和配重块的质量惯性矩计算试样顶部附加物的质量惯性矩,即得试验仪器的特征常数。

    试样为南海某岛礁珊瑚砂,最大粒径为5 mm,不均匀系数Cu为1.9,曲率系数Cc为1.1,级配均匀,其中0.5~1.0 mm粒径范围的颗粒含量达64%,试样的粒径分布曲线详见图2,试样的基本物理性指标详见表1。本次试验采用烘干料,试样尺寸为Ф50 mm×100 mm,根据试验要求的干密度、试样尺寸计算并称取所需土料。试样采用分层击样法制备,共分三层,制备完成后采取抽气法进行试样饱和。为保证试验结果的可比性,所有试样采用相同级配。

    图  2  珊瑚砂的粒径分布曲线
    Figure  2.  Grain-size distribution curve of coral sand
    表  1  珊瑚砂的基本物理性指标
    Table  1.  Basic physical parameters of coral sand
    试样Gsemaxeminρdmax/(g·cm-3)ρdmin/(g·cm-3)
    珊瑚砂2.781.2420.9171.451.24
    下载: 导出CSV 
    | 显示表格

    先在试样自由的一端施加扭转激振力,试样发生共振后迅速切断电源,释放扭力,使试样自由振动。由于阻尼作用,扭转振幅越来越小,最后停止振动。由于振动应变小于10-4,可认为对试样无损伤,故可以采用同一个试样做不同围压下的共振柱试验。

    试样相对密实度取0.65,0.75,0.85,0.95,分别在围压100,200,300,400 kPa条件下固结,进而测定各试样的共振频率及阻尼比。试验方案详见表2

    表  2  试验方案汇总表
    Table  2.  Summary of test schemes
    序号相对密实度Dr制样干密度ρd/(g·cm-3)孔隙比e围压σ3/kPa固结形式
    10.651.371.031100等向固结
    2200
    3300
    4400
    50.751.390.998100
    6200
    7300
    8400
    90.851.410.966100
    10200
    11300
    12400
    130.951.440.933100
    14200
    15300
    16400
    下载: 导出CSV 
    | 显示表格

    针对4种相对密实度试样,分别在围压100,200,300,400 kPa条件下固结稳定后,在试样顶部施加扭转激振力,测得试样的共振频率和阻尼比,进而根据仪器标定的特征常数、试样的密度、高度及质量惯性矩计算试样的最大剪切模量。通过分析不同相对密实度试样在不同围压条件下的最大剪切模量和阻尼比,研究珊瑚砂最大剪切模量和阻尼比的变化规律,为珊瑚砂地基基础的动力响应计算分析提供可靠数据。

    以相对密实度为0.85的试样为例,该试样在100,200,300,400 kPa围压条件下固结稳定后,对试样顶部施加扭转激振力并迅速切断电源,释放扭力,使试样自由振动,根据测得的试样共振频率计算所得的最大剪切模量及对应的阻尼比详见图3

    图  3  不同围压条件下珊瑚砂的动力参数曲线
    Figure  3.  Dynamic parameters of coral sand under different confining pressures

    图3可见:

    (1)珊瑚砂的最大剪切模量随围压的增加呈幂函数增大趋势,这主要是由于试样随着固结围压的增加,试样颗粒发生移动或翻滚使得颗粒重组,导致孔隙比逐渐减小,试样更加密实,颗粒与颗粒之间的接触面积增大,剪切波在试样中的传播速度加快,试验测得的共振频率随围压的增加而增大,故最大剪切模量随围压的增加而增大,但增大的幅度逐渐减小。

    (2)珊瑚砂发生共振时对应的阻尼比随围压的增大而减小,但减小的幅度呈减小趋势,这主要是由于试样在固结过程中,随着孔隙水不断排出,颗粒间孔隙水的体积逐渐减小,颗粒发生滚动或移动,颗粒重组,颗粒与颗粒之间接触更加紧密,使得剪切波在试样中传播速度加快、能量衰减较慢,且衰减的速度逐渐减小。

    以100 kPa的围压为例,相对密实度为0.65,0.75,0.85,0.95的试样在该围压条件下固结稳定后,对试样顶部施加扭转激振力并迅速切断电源,释放扭力,使试样自由振动,根据测得的试样共振频率计算所得的最大剪切模量及对应的阻尼比详见图4

    图  4  不同相对密度条件下珊瑚砂的动力参数曲线
    Figure  4.  Dynamic parameters of coral sand under different relative densities

    图4可知:

    (1)珊瑚砂的最大剪切模量随相对密实度的增加呈线性增加趋势,这主要因为试样相对密实度越大,孔隙比越小,试样愈加密实,颗粒与颗粒之间的接触面积增大,剪切波在试样中的传播速度增大,试验测得的共振频率随相对密实度的增加而增大,故最大剪切模量随相对密实度的增加而增大。

    (2)珊瑚砂发生共振时对应的阻尼比随相对密实度的增大而减小,但减小的幅度呈减小趋势,这主要是由于试样的相对密实度越大,孔隙比越小,颗粒间孔隙的体积越小,颗粒与颗粒之间接触得更加紧密,使得剪切波在试样中传播速度增大、能量衰减越慢,且衰减的速度逐渐减小。

    相对密实度为0.65,0.75,0.85,0.95的试样在100,200,300,400 kPa围压条件下固结,各试样的最大剪切模量及对应的阻尼比详见图5。由于试样的阻尼比λ和相对密实度Dr为无量纲量,将最大剪切模量Gmax和围压σ3分别除以大气压强pa转化为无量纲量。

    图  5  珊瑚砂的动力参数曲线
    Figure  5.  Curves of dynamic parameters of coral sand

    图5可见:

    (1)相对密实度相同的珊瑚砂试样,其最大剪切模量Gmax随围压σ3增加呈幂函数增加趋势,即Gmax/pa= k(σ3/pa)n,不同相对密实度试样的Gmaxσ3增加的速率基本一致,当围压σ3等于大气压强pa时,Gmax的取值随相对密实度Dr的增加而增大,显然最大剪切模量Gmax与围压σ3和相对密实度Dr密切相关,即Gmax= f (σ3,Dr),由于不同相对密实度试样的n值基本一致,则k=f(Dr),不同相对密实度试样的k值如图6所示,显然kDr具有较好的线性关系,则Gmax/pa=(αDr+β)(σ3/pa)n,α,β,n为材料参数,针对本文研究的珊瑚砂,α=246.9,β=456.3,n=0.49。

    图  6   kDr的关系
    Figure  6.  k vs. Dr

    (2)相对密实度相同的珊瑚砂试样,其阻尼比λ随围压σ3增加呈线性减小趋势,即λ=A(σ3/pa)+F,不同相对密实度试样的阻尼比λ随围压σ3增加而减小的速率基本一致,即A值相同。但当围压σ3等于大气压强pa时,各试样的阻尼比大小存在差异,随相对密实度的增加而减小,即F=g(Dr),不同相对密实度试样的F值如图7所示,显然FDr具有较好的线性关系,则λ=A(σ3/pa)+(B Dr +C),A,B,C为材料参数,针对本文研究的珊瑚砂,A=0.25,B=3.12,C=3.81。

    图  7   FDr的关系
    Figure  7.  F vs. Dr

    对我国南海某岛的珊瑚砂开展共振柱试验,研究其在小应变幅值条件下的动力特性,得出如下主要结论:

    (1)珊瑚砂的最大剪切模量随围压的增加呈幂函数增大趋势,随相对密实度的增加呈线性增加趋势。

    (2)珊瑚砂发生共振时对应的阻尼比随围压的增大呈线性减小趋势,随相对密实度的增大也呈减小趋势,但减小的幅度逐渐减小。

    (3)珊瑚砂的最大剪切模量及阻尼比是围压及相对密实度的函数,并建立了相互之间的相关关系,可以为珊瑚砂地区的动力特性研究提供参考和依据。

  • 图  1   砂土和粉土的级配曲线

    Figure  1.   Grain-size distribution curves of sands and silt

    图  2   不同类砂土最大最小孔隙比与细颗粒含量的关系

    Figure  2.   Maximum and minimum void ratios versus fines content for different sandy soils

    图  3   不同激发频率下S波的典型输出信号

    Figure  3.   Typical output signals of S-wave with different excitation frequencies

    图  4   FJ2混合物的典型循环三轴试验结果

    Figure  4.   Typical cyclic triaxial test results of FJ2 mixture

    图  5   不同类砂土循环应力比与液化振次的关系

    Figure  5.   Number of cycles corresponding to initial liquefaction versus CSR for different sandy soils

    图  6   FJ2抗液化强度与三种状态参数的关系

    Figure  6.   Relationship between liquefaction resistance of FJ2 and three state variables

    图  7   不同细颗粒含量下FJ2的G0e*的关系

    Figure  7.   Relationship between G0 and e*

    图  8   不同细颗粒含量下FJ2的CRR15G0的关系

    Figure  8.   Relationship between CRR15 and G0

    图  9   不同初始有效围压下循环应力比与液化振次的关系

    Figure  9.   Number of cycles corresponding to initial liquefaction versus CSR under different initial effective confining pressures

    图  10   不同初始有效围压下CRR15e*的关系

    Figure  10.   Relationship between CRR15 and e* under different initial effective confining pressures

    图  11   不同制样方法试样循环应力比与液化振次的关系

    Figure  11.   Number of cycles of initial liquefaction versus CSR by different sample preparation methods

    图  12   不同制样方法试样CRR15e*的关系

    Figure  12.   Relationship between CRR15 and e* by different sample preparation methods

    图  13   不同粒径比下CRR15e*的关系

    Figure  13.   Relationship between CRR15 and e* under different particle size ratios

    图  14   最小孔隙比与粒径比的关系(数据源于Chaney等[39]

    Figure  14.   Relationship between minimum void ratio and particle size ratio (data from Chaney et al.[39])

    图  15   不同粒径比下CRR15Dr*的关系

    Figure  15.   Relationship between CRR15 and Dr* under different particle size ratios

    表  1   试验材料的基本物理参数

    Table  1   Basic parameters of tested materials

    试验材料 Gs Cu D50/mm D10/mm emax emin
    福建砂-1 2.638 1.50 0.175 0.121 1.017 0.654
    福建砂-2 2.638 1.50 0.250 0.178 0.921 0.535
    福建砂-3 2.638 1.50 0.500 0.344 0.903 0.521
    粉土 2.725 2.75 0.018 0.008
    下载: 导出CSV

    表  2   不排水循环三轴试验方案

    Table  2   Testing programme of undrained cyclic triaxial tests

    材料 Dr0/% FC/% 围压/kPa 制样方法
    FJ1 44.7 0 100 MT
    10 50/100/200
    20 50/100
    70.5 0/10/20 50/100/200 MT/DT
    FJ2 44.7 0/10/20 100 MT
    70.5
    FJ3 44.7 0/10/20 100 MT
    70.5
    注:FJ3材料还包含Dr0=20%,FC=0%和10%的两组试验,其围压和制样方法保持一致。
    下载: 导出CSV
  • [1]

    YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)

    [2] 陈国兴, 金丹丹, 常向东, 等. 最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则[J]. 岩土力学, 2013, 34(10): 2737-2755, 2795. doi: 10.16285/j.rsm.2013.10.005

    CHEN Guoxing, JIN Dandan, CHANG Xiangdong, et al. Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils[J]. Rock and Soil Mechanics, 2013, 34(10): 2737-2755, 2795. (in Chinese) doi: 10.16285/j.rsm.2013.10.005

    [3]

    AMINI F, QI G Z. Liquefaction testing of stratified silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(3): 208-217. doi: 10.1061/(ASCE)1090-0241(2000)126:3(208)

    [4]

    CHANG N Y, YEH S T, KAUFMAN L P. Liquefaction potential of clean and silty sands[C]. //Proceedings of 3rd International Conference on Earthquake Microzonation Conference, Seattle, 1982.

    [5]

    KUERBIS R, NEGUSSEY D, VAID Y. Effect of gradation and fines content on the undrained response of sand[J]. Geotechnical Special Publication, 1988(21): 330-345.

    [6]

    STAMATOPOULOS C A. An experimental study of the liquefaction strength of silty sands in terms of the state parameter[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(8): 662-678. doi: 10.1016/j.soildyn.2010.02.008

    [7]

    CHIEN L K, OH Y N, CHANG C H. Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil[J]. Canadian Geotechnical Journal, 2002, 39(1): 254-265. doi: 10.1139/t01-083

    [8]

    POLITO C P, MARTIN J R. Effects of nonplastic fines on the liquefaction resistance of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(5): 408-415. doi: 10.1061/(ASCE)1090-0241(2001)127:5(408)

    [9]

    XENAKI V C, ATHANASOPOULOS G A. Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effect of fines[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(3): 1-12. doi: 10.1016/S0267-7261(02)00210-5

    [10]

    STAMATOPOULOS C A. The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty Sands1[J]. Soils and Foundations, 2010, 50(1): 173-176. doi: 10.3208/sandf.50.173

    [11]

    DASH H K, SITHARAM T G. Undrained cyclic pore pressure response of sand–silt mixtures: effect of nonplastic fines and other parameters[J]. Geotechnical and Geological Engineering, 2009, 27(4): 501-517. doi: 10.1007/s10706-009-9252-5

    [12]

    OKA L G, DEWOOLKAR M, OLSON S M. Comparing laboratory-based liquefaction resistance of a sand with non-plastic fines with shear wave velocity-based field case histories[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 162-173. doi: 10.1016/j.soildyn.2018.05.028

    [13] 吴琪, 陈国兴, 朱雨萌, 等. 基于等效骨架孔隙比指标的饱和砂类土抗液化强度评价[J]. 岩土工程学报, 2018, 40(10): 1912-1922. doi: 10.11779/CJGE201810019

    WU Qi, CHEN Guoxing, ZHU Yumeng, et al. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. (in Chinese) doi: 10.11779/CJGE201810019

    [14]

    CHEN G X, WU Q, ZHAO K, et al. A binary packing material–based procedure for evaluating soil liquefaction triggering during earthquakes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020040. doi: 10.1061/(ASCE)GT.1943-5606.0002263

    [15]

    KARIM M E, ALAM M J. Effect of non-plastic silt content on the liquefaction behavior of sand–silt mixture[J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 142-150. doi: 10.1016/j.soildyn.2014.06.010

    [16]

    THEVANAYAGAM S. Effect of fines and confining stress on undrained shear strength of silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(6): 479-491. doi: 10.1061/(ASCE)1090-0241(1998)124:6(479)

    [17]

    THEVANAYAGAM S, MARTIN G R. Liquefaction in silty soils—screening and remediation issues[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 1035-1042.

    [18]

    MOHAMMADI A, QADIMI A. A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio[J]. Acta Geotechnica, 2015, 10(5): 587-606. doi: 10.1007/s11440-014-0318-z

    [19]

    RAHMAN M M, LO S R, GNANENDRAN C T. On equivalent granular void ratio and steady state behaviour of loose sand with fines[J]. Canadian Geotechnical Journal, 2008, 45(10): 1439-1456. doi: 10.1139/T08-064

    [20]

    GOBBI S, REIFFSTECK P, LENTI L, et al. Liquefaction triggering in silty sands: effects of non-plastic fines and mixture-packing conditions[J]. Acta Geotechnica, 2022, 17(2): 391-410. doi: 10.1007/s11440-021-01262-1

    [21]

    PORCINO D D, TRIANTAFYLLIDIS T, WICHTMANN T, et al. Application of critical state approach to liquefaction resistance of sand–silt mixtures under cyclic simple shear loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(3): 04020177. doi: 10.1061/(ASCE)GT.1943-5606.0002470

    [22] 石兆吉, 郁寿松, 丰万玲. 土壤液化势的剪切波速判别法[J]. 岩土工程学报, 1993, 15(1): 74-80. doi: 10.3321/j.issn:1000-4548.1993.01.011

    SHI Zhaoji, YU Shousong, FENG Wanling. Shear wave velocity discrimination method for soil liquefaction potential[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(1): 74-80. (in Chinese) doi: 10.3321/j.issn:1000-4548.1993.01.011

    [23] 程国勇, 王建华, 张献民. 饱和砂土的剪切波速与其抗液化强度关系研究[J]. 岩土力学, 2007, 28(4): 689-693. doi: 10.3969/j.issn.1000-7598.2007.04.011

    CHENG Guoyong, WANG Jianhua, ZHENG Xianmin. Experimeatal study on quantitative relationship between shear wave velocity and cyclic liquefaction resistance of saturated sand[J]. Rock and Soil Mechanics, 2007, 28(4): 689-693. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.04.011

    [24]

    CHIEN L K, OH Y N. Influence of fines content and initial shear stress on dynamic properties of hydraulic reclaimed soil[J]. Canadian Geotechnical Journal, 2002, 39(1): 242-253. doi: 10.1139/t01-082

    [25]

    SALGADO R, BANDINI P, KARIM A. Shear strength and stiffness of silty sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 451-462. doi: 10.1061/(ASCE)1090-0241(2000)126:5(451)

    [26]

    GOUDARZY M, RAHMAN M M, KÖNIG D, et al. Influence of non-plastic fines content on maximum shear modulus of granular materials[J]. Soils and Foundations, 2016, 56(6): 973-983. doi: 10.1016/j.sandf.2016.11.003

    [27]

    BOUCKOVALAS G D, ANDRIANOPOULOS K I, PAPADIMITRIOU A G. A critical state interpretation for the cyclic liquefaction resistance of silty sands[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(2): 115-125. doi: 10.1016/S0267-7261(02)00156-2

    [28]

    SZE H Y, YANG J. Failure modes of sand in undrained cyclic loading: impact of sample preparation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 152-169. doi: 10.1061/(ASCE)GT.1943-5606.0000971

    [29]

    ISHIBASHI I, CAPAR O F. Anisotropy and its relation to liquefaction resistance of granular material[J]. Soils and Foundations, 2003, 43(5): 149-159. doi: 10.3208/sandf.43.5_149

    [30]

    YU H, ZENG X, LI B, et al. Effect of fabric anisotropy on liquefaction of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(5): 765-774. doi: 10.1061/(ASCE)GT.1943-5606.0000807

    [31]

    NI Q, TAN T S, DASARI G R, et al. Contribution of fines to the compressive strength of mixed soils[J]. Géotechnique, 2004, 54(9): 561-569. doi: 10.1680/geot.2004.54.9.561

    [32]

    WEI X, YANG J, ZHOU Y G, et al. Influence of particle-size disparity on cyclic liquefaction resistance of silty sands[J]. Géotechnique Letters, 2020, 10(2): 155-161. doi: 10.1680/jgele.19.00076

    [33]

    XU L Y, CAI F, CHEN W Y, et al. Undrained cyclic response of a dense saturated sand with various grain sizes and contents of nonplastic fines: experimental analysis and constitutive modeling[J]. Soil Dynamics and Earthquake Engineering, 2021, 145: 106727. doi: 10.1016/j.soildyn.2021.106727

    [34]

    YANG J, WEI L M, DAI B B. State variables for silty sands: global void ratio or skeleton void ratio?[J]. Soils and Foundations, 2015, 55(1): 99-111. doi: 10.1016/j.sandf.2014.12.008

    [35] 顾晓强, 杨峻, 黄茂松, 等. 砂土剪切模量测定的弯曲元、共振柱和循环扭剪试验[J]. 岩土工程学报, 2016, 38(4): 740-746. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16545.shtml

    GU Xiaoqiang, YANG Jun, HUANG Maosong, et al. Combining bender element, resonant column and cyclic torsional shear tests to determine small strain shear modulus of sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 740-746. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16545.shtml

    [36]

    YANG J, GU X Q. Shear stiffness of granular material at small strains: does it depend on grain size?[J]. Géotechnique, 2013, 63(2): 165-179. doi: 10.1680/geot.11.P.083

    [37]

    BOLTON SEED H, TOKIMATSU K, HARDER L F, et al. Influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of Geotechnical Engineering, 1985, 111(12): 1425-1445. doi: 10.1061/(ASCE)0733-9410(1985)111:12(1425)

    [38]

    XU L Y, ZHANG J Z, CAI F, et al. Constitutive modeling the undrained behaviors of sands with non-plastic fines under monotonic and cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2019, 123: 413-424. doi: 10.1016/j.soildyn.2019.05.021

    [39]

    CHANEY R C, DEMARS K R, LADE P V, et al. Effects of non-plastic fines on minimum and maximum void ratios of sand[J]. Geotechnical Testing Journal, 1998, 21(4): 336. doi: 10.1520/GTJ11373J

    [40]

    CUBRINOVSKI M, ISHIHARA K. Empirical correlation between SPT N-Value and relative density for sandy soils[J]. Soils and Foundations, 1999, 39(5): 61-71. doi: 10.3208/sandf.39.5_61

    [41]

    YILMAZ Y, MOLLAMAHMUTOGLU M. Characterization of liquefaction susceptibility of sands by means of extreme void ratios and/or void ratio range[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1986-1990. doi: 10.1061/(ASCE)GT.1943-5606.0000164

    [42]

    KIM U G, ZHUANG L, KIM D, et al. Evaluation of cyclic shear strength of mixtures with sand and different types of fines[J]. Marine Georesources & Geotechnology, 2017, 35(4): 447-455.

    [43]

    PORCINO D D, DIANO V. The influence of non-plastic fines on pore water pressure generation and undrained shear strength of sand-silt mixtures[J]. Soil Dynamics and Earthquake Engineering, 2017, 101: 311-321. doi: 10.1016/j.soildyn.2017.07.015

  • 期刊类型引用(6)

    1. 黄爱广,蔡晓光,黄鑫,王磊,李思汉,袁超. 基于共振柱试验的堆积层滑坡滑带土动力特性研究. 防灾科技学院学报. 2024(03): 22-29 . 百度学术
    2. 袁丽,崔振东,张忠良. Stoke固定-自由型共振柱实验系统测试原理及标定方法. 实验技术与管理. 2023(06): 68-73+89 . 百度学术
    3. 池超凡,郑存波,谭书平,董学安,张志豪,周婕. 软黏土小应变剪切模量影响因素试验和模型研究. 建筑结构. 2023(S1): 3025-3029 . 百度学术
    4. 王家全,张涛艺,唐毅,唐滢. 循环应力比与有效围压对北部湾海砂动力特性的影响. 实验力学. 2023(04): 507-516 . 百度学术
    5. 季鹏越,张明霞,王晋宝,王亚军. 细粒含量对舟山砂动力特性的影响. 浙江海洋大学学报(自然科学版). 2023(05): 455-462 . 百度学术
    6. 简涛,孔令伟,柏巍,王俊涛,刘炳恒. 含水率对原状黄土小应变剪切模量影响的试验研究. 岩土工程学报. 2022(S1): 160-165 . 本站查看

    其他类型引用(3)

图(15)  /  表(2)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  52
  • PDF下载量:  190
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-04-04
  • 网络出版日期:  2023-02-19
  • 刊出日期:  2023-06-30

目录

/

返回文章
返回