Extended three-dimensional analysis of cracked slopes using upper-bound limit method
-
摘要: 裂缝的存在会降低边坡稳定性,而在边坡宽度受到限制时三维效应更加显著,因此有必要对裂缝边坡稳定性进行评估。针对裂缝边坡三维稳定性研究,基于极限分析上限定理,在三维破坏机构中引入一条垂直张拉裂缝,并引进机构参数拓展裂缝边坡三维破坏模式,包括坡面破坏和坡底破坏,建立能量平衡方程并通过优化算法求解裂缝边坡稳定系数上限解。根据g-line图像法绘制裂缝边坡稳定性图表以便读取安全系数。分析了边坡宽高比、坡角以及土体内摩擦角对裂缝边坡破坏模式和裂缝深度及位置的影响规律。结果表明:对于确定的边坡几何形态以及土体参数,存在最小边坡宽高比B/H*,当边坡宽高比小于B/H*,边坡发生坡面破坏且坡顶裂缝的影响可以忽略;内摩擦角φ小于5°时,边坡发生坡底破坏,而对于裂缝边坡,仅在φ=1°左右发生坡底破坏;随着边坡宽高比的增大,裂缝深度逐渐增加,裂缝位置逐渐远离坡肩,但对于坡角为75°的边坡裂缝深度先增大后减小。Abstract: The existence of cracks will reduce the stability of a slope and the three-dimensional effect is more significant when its width is limited. Therefore, it is necessary to evaluate the stability of cracked slopes. In order to study the three-dimensional stability of cracked slopes, based on the upper-bound theorem of limit analysis, a vertical tensile crack is introduced into the three-dimensional failure mechanism, and the mechanism parameters are introduced to extend the three-dimensional failure mode of slopes, including face failure and base failure. The energy balance equation is established, and the upper bounds of stability number of cracked slopes are obtained by the optimization algorithm. The stability charts of cracked slopes are established based on the g-line graphical method to read the factor of safety conveniently. The influences of slope width-to-height ratio, slope angle and internal friction angle of soils on the failure mechanism of cracked slopes and the crack depth and location are analyzed. The results show that for the specific slope geometry and soil parameters, there is a minimum slope width B/H*. When the slope width is less than B/H*, the failure surface passes above the slope toe, and the influences of the crack on the upper surface of the slope can be ignored. When the internal friction angle φ is less than 5°, the failure surface passes below the slope toe; for the cracked slope, only when φ=1°, failure surface passes below the slope. As the width of the slope increases, the crack depth gradually increases, and the crack location gradually moves away from the slope crest, while the crack depth of the slope with inclination 75° increases first and then decreases.
-
Keywords:
- slope stability /
- limit analysis /
- crack /
- factor of safety /
- graphical method
-
-
表 1 不考虑坡顶裂缝情况下三维边坡稳定系数对比
Table 1 Comparison of 3D stability factors of slopes without cracks
表 2 考虑坡顶裂缝情况下三维边坡稳定系数对比
Table 2 Comparison of 3D stability factors of slopes with cracks
β/(°) φ/(°) B/H γH/c 本文解答 文献[17]解答 30 10 0.8 28.00 27.74 20 3.0 47.81 47.75 45 10 0.8 15.82 15.68 20 3.0 17.54 17.53 60 10 0.8 11.15 11.07 20 3.0 10.60 10.59 70 10 0.8 8.33 8.26 20 3.0 7.02 7.01 表 3 边坡稳定系数(φ=15°)
Table 3 Stability factors of slopes (φ=15°)
B/H β/(°) 30 45 60 75 γH/c δ/H x/H γH/c δ/H x/H γH/c δ/H x/H γH/c δ/H x/H 0.5 PC 73.155a 0.003 0.043 31.978a 0.126 0.041 19.903a 0.331 0.041 14.085a 0.477 0.070 IN 73.106a — — 32.184a — — 20.889a — — 15.834a — — 0.6 PC 61.199a 0.015 0.075 26.685 0.145 0.043 16.670 0.389 0.057 11.713 0.599 0.082 IN 61.002a — — 26.725 — — 17.482 — — 13.322 — — 0.8 PC 46.051 0.021 0.107 20.913 0.186 0.111 13.524 0.392 0.117 9.598 0.587 0.126 IN 46.071 — — 21.220 — — 14.306 — — 10.936 — — 1.0 PC 38.698 0.046 0.123 18.230 0.211 0.136 11.965 0.386 0.148 8.505 0.571 0.150 IN 38.795 — — 18.648 — — 12.786 — — 9.797 — — 1.5 PC 30.874 0.084 0.145 15.298 0.234 0.173 10.190 0.382 0.186 7.217 0.553 0.182 IN 31.126 — — 15.855 — — 11.087 — — 8.503 — — 3.0 PC 25.124 0.114 0.170 12.994 0.248 0.207 8.722 0.379 0.220 6.111 0.539 0.211 IN 25.540 — — 13.686 — — 9.714 — — 7.433 — — 注: a坡面破坏;PC考虑坡顶存在裂缝情况;IN考虑坡顶无裂缝情况;x/H裂缝位置与坡肩B的距离。表 4 边坡稳定系数(φ=30°)
Table 4 Stability factors of slopes (φ=30°)
B/H β/(°) 45 60 75 γH/c δ/H x/H γH/c δ/H x/H γH/c δ/H x/H 0.5 PC 96.560a 0.001 0.040 40.219a 0.125 0.041 23.673a 0.389 0.029 IN 96.417a — — 40.590a — — 25.446a — — 0.6 PC 80.718a 0.021 0.061 33.511a 0.187 0.042 19.361a 0.552 0.016 IN 80.287a — — 33.935a — — 21.226a — — 0.8 PC 61.978 0.045 0.067 25.882 0.263 0.061 15.137 0.523 0.081 IN 62.121 — — 26.464 — — 16.534 — — 1.0 PC 53.724 0.068 0.069 22.644 0.250 0.092 13.261 0.491 0.107 IN 54.066 — — 23.398 — — 14.647 — — 1.5 PC 45.243 0.088 0.076 19.260 0.251 0.115 11.186 0.466 0.134 IN 45.836 — — 20.216 — — 12.652 — — 3.0 PC 39.061 0.098 0.084 16.677 0.252 0.132 9.516 0.452 0.156 IN 39.864 — — 17.830 — — 11.120 — — 注: a坡面破坏;PC考虑坡顶存在裂缝情况;IN考虑坡顶无裂缝情况;x/H裂缝位置与坡肩B的距离。 -
[1] 陈祖煜. 土质边坡稳定分析:原理·方法·程序[M]. 北京: 中国水利水电出版社, 2003. CHEN Zu-yu. Soil Slope Stability Analysis[M]. Beijing: China Water Power Press, 2003. (in Chinese)
[2] 陈曦, 刘春杰. 有限元强度折减法中安全系数的搜索算法[J]. 岩土工程学报, 2010, 32(9): 1443-1447. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009028.htm CHEN Xi, LIU Chun-jie. Search algorithms for safety factor in finite element shear strength reduction method[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1443-1447. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009028.htm
[3] DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2): 157-165. doi: 10.1090/qam/48291
[4] 刘锋, 芮勇勤, 张春. 坡顶张拉裂缝对边坡稳定性影响[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(9): 949-954. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201609010.htm LIU Feng, RUI Yong-qin, ZHANG Chun. Influence of tension cracks of slope crest on the stability of slope[J]. Journal of Liaoning Technical University (Natural Science), 2016, 35(9): 945-954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201609010.htm
[5] 秦会来, 周予启, 黄茂松, 等. 基于上限理论的预留土支护基坑极限抗力分析[J]. 岩土工程学报, 2020, 42(6): 1101-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006017.htm QIN Hui-lai, ZHOU Yu-qi, HUANG Mao-song, et al. Passive earth pressure analysis of berm-retained excavation by upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1101-1107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006017.htm
[6] 吴梦喜, 杨家修, 湛正刚. 边坡稳定分析的虚功率法[J]. 力学学报, 2020, 52(3): 663-672. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202003007.htm WU Meng-xi, YANG Jia-xiu, ZHAN Zheng-gang. A virtual power slope stability analysis method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 663-672. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202003007.htm
[7] CHEN W F. Limit Analysis and Soil Plasticity[M]. Amsterdam: Elsevier Science, 1975.
[8] TERZAGHI K. Theoretical Soil Mechanics[M]. New York: Wiley, 1943.
[9] SPENCER E. A method of analysis of the stability of embankments assuming parallel inter-slice forces[J]. Géotechnique, 1967, 17(1): 11-26. doi: 10.1680/geot.1967.17.1.11
[10] COUSINS B F. Stability charts for simple earth slopes allowing for tension cracks[C]//Proceedings of the Third Australia-New Zealand Conference on Geomechanics, 1980, Wellington.
[11] MICHALOWSKI R L. Stability assessment of slopes with cracks using limit analysis[J]. Canadian Geotechnical Journal, 2013, 50(10): 1011-1021. doi: 10.1139/cgj-2012-0448
[12] UTILI S. Investigation by limit analysis on the stability of slopes with cracks[J]. Géotechnique, 2013, 63(2): 140-154. doi: 10.1680/geot.11.P.068
[13] ZHAO L H, CHENG X, ZHANG Y, et al. Stability analysis of seismic slopes with cracks[J]. Computers and Geotechnics, 2016, 77: 77-90. doi: 10.1016/j.compgeo.2016.04.007
[14] 何毅, 余军炎, 袁冉, 等. 考虑坡顶倾角的土质裂隙边坡稳定性分析[J]. 中国公路学报, 2021, 34(5): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105005.htm HE Yi, YU Jun-yan, YUAN Ran, et al. Stability analysis of soil slope with cracks considering upper slope inclination angle[J]. China Jouranl of Highway and Transport, 2021, 34(5): 45-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105005.htm
[15] 周志军, 朱林楦, 陈磊. 倾斜坡顶黄土边坡垂直裂隙深度计算方法[J]. 中国公路学报, 2021, 34(5): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105004.htm ZHOU Zhi-jun, ZHU Lin-xuan, CHEN Lei. Calculation method of vertical crack depth of loess slope with inclined crest[J]. China Journal of Highway and Transport, 2021, 34(5): 37-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105004.htm
[16] MICHALOWSKI R L, DRESCHER A. Three-dimensional stability of slopes and excavations[J]. Géotechnique, 2009, 59(10): 839-850.
[17] HE Y, LIU Y, ZHANG Y, et al. Stability assessment of three-dimensional slopes with cracks[J]. Engineering Geology, 2019, 252: 136-144.
[18] LI Z W, YANG X L, LI T Z. Static and seismic stability assessment of 3D slopes with cracks[J]. Engineering Geology, 2019, 265: 105450.
[19] GAO Y F, ZHANG F, LEI G H, et al. An extended limit analysis of three-dimensional slope stability[J]. Géotechnique, 2013, 63(6): 518.
[20] DOWON P, MICHALOWSKI R L. Intricacies in three-dimensional limit analysis of earth slopes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(17): 2109-2129.
[21] SUN J, ZHAO Z. Stability charts for homogenous soil slopes[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 139(12): 2212-2218.
[22] 孙超伟, 柴军瑞, 许增光, 等. 求解三维均质边坡安全系数的稳定性图表法研究[J]. 岩土工程学报, 2018, 40(11): 2068-2077. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811015.htm SUN Chao-wei, CHAI Jun-rui, XU Zeng-guang, et al. Stability charts for determining safety factors of 3D homogeneous slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2068-2077. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811015.htm
[23] GAO Y F, ZHANG F, LEI G H, et al. Stability charts for 3D failures of homogeneous slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1528-1538.
[24] LI A J, MERIFIELD R S, LYAMIN A V. Three-dimensional stability charts for slopes based on limit analysis methods[J]. Canadian Geotechnical Journal, 2010, 47(12): 1316-1334.
[25] RAO P P, ZHAO L X, CHEN Q S, et al. Three-dimensional limit analysis of slopes reinforced with piles in soils exhibiting heterogeneity and anisotropy[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 194-199.
[26] MICHALOWSKI R L. Stability charts for uniform slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(4): 351-355.
[27] QIN C, CHIAN S C. New perspective on seismic slope stability analysis[J]. International Journal of Geomechanics, 2018, 18(7): 1-8.
[28] CHEN Z Y. Random trials used in determining global minimum factors of safety of slopes[J]. Canadian Geotechnical Journal, 1992, 29(2): 225-233.
-
期刊类型引用(34)
1. 车海龙,周华,张银平,宋心宇,王丽娟,封伟祎. 作物根土复合体力学特性研究现状. 中国农机化学报. 2025(02): 295-301+310 . 百度学术
2. 杨颜齐,王桂尧,赵亚,欧阳淼,陈东炅. 泥炭处治膨胀土的裂隙演化试验研究. 公路交通科技. 2025(02): 61-67 . 百度学术
3. 杨爽,陈济丁,孔亚平,陶双成,伍红燕,李金波,宋桂龙. 模拟岩质边坡条件下11种护坡植物单根抗拉特性研究. 草原与草坪. 2025(01): 136-146 . 百度学术
4. 王荣昌,杨忠年,时伟,孙振兴,孟相,凌贤长. 橡胶纤维加筋膨胀土在不排水和排水荷载下的剪切行为. 公路. 2025(04): 357-363 . 百度学术
5. 吴嘉希,朱会军,邢鹤严,陈佳倩,谢子曦,邓文琪,于珊,曾曙才,吴道铭. 适用植物根系生长观察的半固态凝胶配方筛选. 江西农业大学学报. 2024(01): 161-172 . 百度学术
6. 谢亚军,顾浩,苏宇宸,王媛. 考虑植被力学-水力作用的洪泽湖堤防加固效果分析. 河海大学学报(自然科学版). 2024(02): 61-68 . 百度学术
7. 张川,谢祥荣,段青松,张玉锴,李效顺,李淑芳,徐兴倩,陈正发. 木纤维重构红壤下根系特征对根土复合体抗剪特性的影响. 农业工程学报. 2024(04): 138-146 . 百度学术
8. 谢祥荣,陈正发,朱贞彦,徐兴倩,阎凯,李博,段青松,李淑芳,张川. 根土复合体力学效应及其模型构建研究进展与展望. 水土保持学报. 2024(02): 13-28+196 . 百度学术
9. 高英,马艳霞,张吾渝,张小荣,杨丰华. 寒旱环境灌木根系增强春融期边坡稳定性影响. 科学技术与工程. 2024(12): 5096-5103 . 百度学术
10. 程平,吴礼舟. 根直径及干湿循环对根土复合体抗剪强度影响的试验研究. 成都理工大学学报(自然科学版). 2024(03): 465-476 . 百度学术
11. 刘英朴,任权. 降雨条件下植被型公路边坡的稳定性研究. 地下水. 2024(03): 270-274 . 百度学术
12. 高万隆,刘瑞香,郭占斌,王树彦,王建瑞,杨广源. 阴山北麓武川地区藜麦根-土复合体抗剪特性研究. 绿色科技. 2024(10): 64-71 . 百度学术
13. 陈婧逸,陈晓清,宋东日,吕明,蒋豪. 灌木根系形态对土体强度影响的大型直剪试验研究. 长江科学院院报. 2024(08): 120-127+163 . 百度学术
14. 张艳杰,庞清刚,刘洋,陈啸海,彭奕铠,王晶. 紫穗槐根土复合体特征对黄土边坡稳定性的影响. 水土保持通报. 2024(04): 33-44 . 百度学术
15. 罗元仓,张小荣,高英. 降雨入渗对寒旱环境根-土复合体斜坡稳定性的影响. 科学技术与工程. 2024(24): 10500-10507 . 百度学术
16. 钟鑫,简文彬,樊秀峰,吴宜龙,林昀昭,张骏逸. 基于现场原型测试的毛竹根土复合体力学性能研究. 自然灾害学报. 2024(05): 38-47 . 百度学术
17. 代洪川,温和,徐露强,唐于明,何川东,龚仓,李成平. 基于不同根截面比的根-土复合体室内直剪试验. 科技和产业. 2024(21): 319-324 . 百度学术
18. 廖拉拉,唐丽霞,吴文丽,阮仕航,王子杰. 喀斯特地区棕榈根-土复合体抗剪特性. 山地学报. 2024(06): 827-837 . 百度学术
19. 毕银丽,罗睿,柯增鸣,薛超. 接菌对根土复合体抗剪拉作用机理及其矿山生态修复潜力. 煤炭科学技术. 2023(01): 493-501 . 百度学术
20. 卢俊廷. 四种护坡植物根系对红黏土边坡支护效果研究. 中国水运(下半月). 2023(06): 55-57 . 百度学术
21. 何稼,黄鑫,晏凤元,王昊. 仿生岩土技术的研究进展. 岩土工程学报. 2023(06): 1200-1211 . 本站查看
22. 陈智锋,李辉,蒋宁山,刘成奎. 冻融时间和含水率对紫穗槐加筋黄土抗剪强度的影响. 水土保持通报. 2023(02): 43-49+59 . 百度学术
23. 陈筠,陈泰徐,王爽,王连锐,邬忠虎. 根-土复合体的胀缩变形及干湿循环后的力学特性研究. 水利水电技术(中英文). 2023(05): 136-146 . 百度学术
24. 孙渊,李辉,陈智峰,董建鹏,王亚伟. 基于离散元方法的根土复合体冻融损伤数值模拟研究. 科学技术与工程. 2023(16): 7025-7032 . 百度学术
25. 陈飞,谢蕴忠,王俊峰,张仕彬. 基于数值模拟方法的根系护坡研究进展. 科学技术与工程. 2023(16): 6728-6738 . 百度学术
26. 穆浩祖,张彦洪. 不同含水率与含根率对根土复合体抗剪强度的影响. 水利技术监督. 2023(08): 198-201 . 百度学术
27. 展鹏,张超波,张强,冯潇慧,丁阳,蒋静. 干湿交替下苜蓿根系对黄土抗剪力学性能影响. 水土保持研究. 2023(06): 222-230 . 百度学术
28. 张珉瑞,朱少东,李盼,段青松,杨苑君. 干热河谷区4种典型植被土壤抗剪性能影响因素探究. 江西农业大学学报. 2023(05): 1285-1296 . 百度学术
29. 骆丕昭,王云琦,李通,祁子寒,何相昌,李克文. 基于三轴UU试验的土体含水率对根土复合体强度特性的影响. 水土保持学报. 2023(06): 153-160 . 百度学术
30. 黄燕玲,许君林,张彦儒. 自卸砂船舱口围板高度与其稳性关系的研究. 中国水运. 2023(12): 63-64 . 百度学术
31. 谷英东,程青,唐朝生,施斌. 不同干密度条件下植被土干缩开裂特性试验研究. 岩土工程学报. 2023(11): 2420-2428 . 本站查看
32. 雷磊,万昊,江涛,师一卿,吕平海,田堪良,王晓东,杨傲秋. 不同生长年限的刺槐根系对黄土边坡加固作用的研究. 水资源与水工程学报. 2022(05): 183-188+199 . 百度学术
33. 邵严,郝勇,王前华,丁琅,刘俊麟. 植物根系固土研究进展. 乡村科技. 2022(17): 120-122 . 百度学术
34. 钟彩尹,李鹏程,马滔,吴礼舟. 根-土复合体的三轴试验及其强度分析. 水文地质工程地质. 2022(06): 97-104 . 百度学术
其他类型引用(26)