• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
RAO Ping-ping, WU Jian, CUI Ji-fei, ZHAO Lin-xue. Extended three-dimensional analysis of cracked slopes using upper-bound limit method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1612-1620. DOI: 10.11779/CJGE202109005
Citation: RAO Ping-ping, WU Jian, CUI Ji-fei, ZHAO Lin-xue. Extended three-dimensional analysis of cracked slopes using upper-bound limit method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1612-1620. DOI: 10.11779/CJGE202109005

Extended three-dimensional analysis of cracked slopes using upper-bound limit method

More Information
  • Received Date: December 14, 2020
  • Available Online: December 02, 2022
  • The existence of cracks will reduce the stability of a slope and the three-dimensional effect is more significant when its width is limited. Therefore, it is necessary to evaluate the stability of cracked slopes. In order to study the three-dimensional stability of cracked slopes, based on the upper-bound theorem of limit analysis, a vertical tensile crack is introduced into the three-dimensional failure mechanism, and the mechanism parameters are introduced to extend the three-dimensional failure mode of slopes, including face failure and base failure. The energy balance equation is established, and the upper bounds of stability number of cracked slopes are obtained by the optimization algorithm. The stability charts of cracked slopes are established based on the g-line graphical method to read the factor of safety conveniently. The influences of slope width-to-height ratio, slope angle and internal friction angle of soils on the failure mechanism of cracked slopes and the crack depth and location are analyzed. The results show that for the specific slope geometry and soil parameters, there is a minimum slope width B/H*. When the slope width is less than B/H*, the failure surface passes above the slope toe, and the influences of the crack on the upper surface of the slope can be ignored. When the internal friction angle φ is less than 5°, the failure surface passes below the slope toe; for the cracked slope, only when φ=1°, failure surface passes below the slope. As the width of the slope increases, the crack depth gradually increases, and the crack location gradually moves away from the slope crest, while the crack depth of the slope with inclination 75° increases first and then decreases.
  • [1]
    陈祖煜. 土质边坡稳定分析:原理·方法·程序[M]. 北京: 中国水利水电出版社, 2003.

    CHEN Zu-yu. Soil Slope Stability Analysis[M]. Beijing: China Water Power Press, 2003. (in Chinese)
    [2]
    陈曦, 刘春杰. 有限元强度折减法中安全系数的搜索算法[J]. 岩土工程学报, 2010, 32(9): 1443-1447. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009028.htm

    CHEN Xi, LIU Chun-jie. Search algorithms for safety factor in finite element shear strength reduction method[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1443-1447. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009028.htm
    [3]
    DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2): 157-165. doi: 10.1090/qam/48291
    [4]
    刘锋, 芮勇勤, 张春. 坡顶张拉裂缝对边坡稳定性影响[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(9): 949-954. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201609010.htm

    LIU Feng, RUI Yong-qin, ZHANG Chun. Influence of tension cracks of slope crest on the stability of slope[J]. Journal of Liaoning Technical University (Natural Science), 2016, 35(9): 945-954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201609010.htm
    [5]
    秦会来, 周予启, 黄茂松, 等. 基于上限理论的预留土支护基坑极限抗力分析[J]. 岩土工程学报, 2020, 42(6): 1101-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006017.htm

    QIN Hui-lai, ZHOU Yu-qi, HUANG Mao-song, et al. Passive earth pressure analysis of berm-retained excavation by upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1101-1107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006017.htm
    [6]
    吴梦喜, 杨家修, 湛正刚. 边坡稳定分析的虚功率法[J]. 力学学报, 2020, 52(3): 663-672. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202003007.htm

    WU Meng-xi, YANG Jia-xiu, ZHAN Zheng-gang. A virtual power slope stability analysis method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 663-672. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202003007.htm
    [7]
    CHEN W F. Limit Analysis and Soil Plasticity[M]. Amsterdam: Elsevier Science, 1975.
    [8]
    TERZAGHI K. Theoretical Soil Mechanics[M]. New York: Wiley, 1943.
    [9]
    SPENCER E. A method of analysis of the stability of embankments assuming parallel inter-slice forces[J]. Géotechnique, 1967, 17(1): 11-26. doi: 10.1680/geot.1967.17.1.11
    [10]
    COUSINS B F. Stability charts for simple earth slopes allowing for tension cracks[C]//Proceedings of the Third Australia-New Zealand Conference on Geomechanics, 1980, Wellington.
    [11]
    MICHALOWSKI R L. Stability assessment of slopes with cracks using limit analysis[J]. Canadian Geotechnical Journal, 2013, 50(10): 1011-1021. doi: 10.1139/cgj-2012-0448
    [12]
    UTILI S. Investigation by limit analysis on the stability of slopes with cracks[J]. Géotechnique, 2013, 63(2): 140-154. doi: 10.1680/geot.11.P.068
    [13]
    ZHAO L H, CHENG X, ZHANG Y, et al. Stability analysis of seismic slopes with cracks[J]. Computers and Geotechnics, 2016, 77: 77-90. doi: 10.1016/j.compgeo.2016.04.007
    [14]
    何毅, 余军炎, 袁冉, 等. 考虑坡顶倾角的土质裂隙边坡稳定性分析[J]. 中国公路学报, 2021, 34(5): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105005.htm

    HE Yi, YU Jun-yan, YUAN Ran, et al. Stability analysis of soil slope with cracks considering upper slope inclination angle[J]. China Jouranl of Highway and Transport, 2021, 34(5): 45-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105005.htm
    [15]
    周志军, 朱林楦, 陈磊. 倾斜坡顶黄土边坡垂直裂隙深度计算方法[J]. 中国公路学报, 2021, 34(5): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105004.htm

    ZHOU Zhi-jun, ZHU Lin-xuan, CHEN Lei. Calculation method of vertical crack depth of loess slope with inclined crest[J]. China Journal of Highway and Transport, 2021, 34(5): 37-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105004.htm
    [16]
    MICHALOWSKI R L, DRESCHER A. Three-dimensional stability of slopes and excavations[J]. Géotechnique, 2009, 59(10): 839-850.
    [17]
    HE Y, LIU Y, ZHANG Y, et al. Stability assessment of three-dimensional slopes with cracks[J]. Engineering Geology, 2019, 252: 136-144.
    [18]
    LI Z W, YANG X L, LI T Z. Static and seismic stability assessment of 3D slopes with cracks[J]. Engineering Geology, 2019, 265: 105450.
    [19]
    GAO Y F, ZHANG F, LEI G H, et al. An extended limit analysis of three-dimensional slope stability[J]. Géotechnique, 2013, 63(6): 518.
    [20]
    DOWON P, MICHALOWSKI R L. Intricacies in three-dimensional limit analysis of earth slopes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(17): 2109-2129.
    [21]
    SUN J, ZHAO Z. Stability charts for homogenous soil slopes[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 139(12): 2212-2218.
    [22]
    孙超伟, 柴军瑞, 许增光, 等. 求解三维均质边坡安全系数的稳定性图表法研究[J]. 岩土工程学报, 2018, 40(11): 2068-2077. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811015.htm

    SUN Chao-wei, CHAI Jun-rui, XU Zeng-guang, et al. Stability charts for determining safety factors of 3D homogeneous slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2068-2077. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811015.htm
    [23]
    GAO Y F, ZHANG F, LEI G H, et al. Stability charts for 3D failures of homogeneous slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1528-1538.
    [24]
    LI A J, MERIFIELD R S, LYAMIN A V. Three-dimensional stability charts for slopes based on limit analysis methods[J]. Canadian Geotechnical Journal, 2010, 47(12): 1316-1334.
    [25]
    RAO P P, ZHAO L X, CHEN Q S, et al. Three-dimensional limit analysis of slopes reinforced with piles in soils exhibiting heterogeneity and anisotropy[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 194-199.
    [26]
    MICHALOWSKI R L. Stability charts for uniform slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(4): 351-355.
    [27]
    QIN C, CHIAN S C. New perspective on seismic slope stability analysis[J]. International Journal of Geomechanics, 2018, 18(7): 1-8.
    [28]
    CHEN Z Y. Random trials used in determining global minimum factors of safety of slopes[J]. Canadian Geotechnical Journal, 1992, 29(2): 225-233.
  • Cited by

    Periodical cited type(14)

    1. 王金华,王玺鑫,魏黄薇,陈邦霖,潘鸿,叶利涵. 曲率系数及含水率对粗粒土击实特性影响试验研究. 黑龙江工业学院学报(综合版). 2025(01): 142-145 .
    2. 左镇华,桂勇. 描述连续级配曲线的级配方程及其适用性. 广东土木与建筑. 2024(06): 18-22+33 .
    3. 王萌,于群丁,肖源杰,华文俊,李文奇,毛建锋,李志勇. 振动压实致粗粒土填料颗粒运移和空隙演化特征. 中国公路学报. 2024(09): 197-208 .
    4. 曲诗章,刘晓明,黎莉,陈仁朋. 基于双分形级配模型参数的粗粒土渗透系数计算公式. 岩土工程学报. 2023(01): 144-152 . 本站查看
    5. 张天军,王小军,庞明坤,张硕,王飞. 考虑间断级配的破碎矸石压实和再破碎研究. 中南大学学报(自然科学版). 2023(01): 314-326 .
    6. 马丹,李樯,张吉雄,刘勇,侯文涛. 断层破碎带岩体孔隙结构表征与非线性渗流特性. 煤炭学报. 2023(02): 666-677 .
    7. 宋宜祥,管景华,李彦奇,黄达. 反粒序砂土体内侵蚀及渗流特性变化规律试验研究. 地质科技通报. 2023(03): 16-27 .
    8. 杨海华,杨武,刘汉龙,马俊玲,王景. 基于PPR数据建模技术的砂砾石料应力应变规律拟合. 材料导报. 2023(13): 137-142 .
    9. 张炎飞,刘先峰,袁胜洋,陈伟志. 过渡型细粒土击实特性及基质吸力试验研究. 应用基础与工程科学学报. 2023(04): 935-945 .
    10. 沈超敏,邓刚,刘斯宏,严俊,毛航宇,王柳江. 基于颗粒堆积算法的堆石料压实密度预测研究. 水利学报. 2023(08): 920-929 .
    11. 梁立峰,赖仁桂,刘顺凯. 基于离散元的砂砾石填料压实特性研究. 路基工程. 2023(06): 37-45 .
    12. 谢康,陈晓斌,肖宪普,程玉峰,尧俊凯,郝哲睿. 颗粒细长比对粗粒土填料振动压实特性的影响. 中南大学学报(自然科学版). 2023(12): 4839-4847 .
    13. 周雨奇,王涛,刘斯宏. 土石混合料阈值细粒含量的确定. 人民长江. 2021(04): 187-192 .
    14. 陈晓斌,郭云鹏,蔡德钩,尧俊凯,肖源杰. 铁路工程粗颗粒土路基填料研究现状与发展综述. 路基工程. 2021(03): 1-11 .

    Other cited types(13)

Catalog

    Article views (349) PDF downloads (207) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return