• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

粒化高炉矿渣微粉在软土固化中的应用及其加固机理

易耀林, 卿学文, 庄焱, 刘松玉, 杜广印

易耀林, 卿学文, 庄焱, 刘松玉, 杜广印. 粒化高炉矿渣微粉在软土固化中的应用及其加固机理[J]. 岩土工程学报, 2013, 35(zk2): 829-833.
引用本文: 易耀林, 卿学文, 庄焱, 刘松玉, 杜广印. 粒化高炉矿渣微粉在软土固化中的应用及其加固机理[J]. 岩土工程学报, 2013, 35(zk2): 829-833.
YI Yao-lin, QING Xue-wen, ZHUANG Yan, LIU Song-yu, DU Guang-yin. Utilization of GGBS in stabilization of soft soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 829-833.
Citation: YI Yao-lin, QING Xue-wen, ZHUANG Yan, LIU Song-yu, DU Guang-yin. Utilization of GGBS in stabilization of soft soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 829-833.

粒化高炉矿渣微粉在软土固化中的应用及其加固机理  English Version

基金项目: “十二五”国家科技支撑计划项目(2012BAJ01B02-01)
详细信息
    作者简介:

    易耀林(1982- ),男,湖南怀化人,博士,从事地基处理和环境岩土工程研究。E-mail: yy331@cam.ac.uk。

  • 中图分类号: TU472

Utilization of GGBS in stabilization of soft soils and its mechanism

  • 摘要: 软土固化是国内外广泛应用的软土地基处理技术之一,而波特兰水泥是最常用的软土固化剂。但是,波特兰水泥的生产过程存在显著的环境问题,主要表现为高能耗、高CO2排放和不可再生资源消耗。为了减轻该影响,可以采用工业副产品/废料作为主要原料,来替代(全部或部分)水泥作为软土固化剂。介绍了工业副产品/废料——粒化高炉矿渣微粉的生产来源、主要成分,以及在软土固化中的应用现状和加固机理。采用粒化高炉矿渣微粉作为软土固化剂不仅可以减小水泥生产过程带来的环境影响,同时还能提高软土固化效果,降低工程造价。
    Abstract: Cement stabilization is one of the most widely used soft ground improvement methods, with Portland cement being the most commonly employed binder. However, there are significant environmental impacts associated with the production of PC in terms of high energy and no-renewable resources consumption as well as CO2 emissions. In order to mitigate this effect, the incorporation of industrial by-products in partial or full cement replacement as soft soil stabilization has been encouraged. The production process, chemical properties, application and soft soil stabilization mechanism of an industry by-product/waste-ground granulated blastfurnace slag (GGBS) are introduced. The utilization of GGBS in stahilization of soft soils stabilization can reduce the significant environmental impacts associated with Portland cement production and increase the soft soil stabilizing efficiency and reduce the engineering cost.
  • [1] CDIT. The deep mixing method: principle, design and construction [M]. Tokyo: A A Balkema Publishers, 2002.
    [2] HEWLETT P C. Lea's chemistry of cement and concrete (4th edition) [M]. Oxford: Elsevier, 1998.
    [3] HIGGINS D D. GGBS and sustainability[J]. Construction Materials, 2007, 160(3): 99-101.
    [4] SHI C J, KRIVENKO P V, ROY D. Alkali-activated cements and concretes[M]. London: T aylor & Francis, 2006.
    [5] HIGGINS D D. Soil stabilisation with ground granulated blastfurnace slag[R]. Surrey: UK Cementitious Slag makers Association report, 2005.
    [6] HAKKINEN T. The influence of slag content on the microstructure, permeability and mechanical properties of concrete. Part 1: Microstructural studies and basic mechanical properties[J]. Cement and Concrete Research, 1993, 23(2): 407-421.
    [7] WILD S, KINUTHIA J M, ROBINSON R B, el al. Effects of ground granulated blast furnace slag (GGBS) on the strength and swelling properties of lime-stabilized kaolinite in the presence of sulphates[J]. Clay Minerals, 1996, 31(3): 423-433.
    [8] WILD S, KINUTHIA J M, JONES G I, et al. Effects of partial substitution of lime with ground granulated blast furnace slag (GGBS) on the strength properties of lime stabilised sulphate-bearing clay soils[J]. Engineering Geology, 1998, 51(1): 37-53.
    [9] WILD S, KINUTHIA J M, JONES G I, et al. Suppression of swelling associated with ettringite formation in lime stabilized sulphate bearing clay soils by partial substitution of lime with granulated blastfurnace slag[J]. Engineering Geology, 1999, 51(4): 257-277.
    [10] TASONG W A, WILD S, TILLEY R J D. Mechanism by which ground granulated blastfurnace slag prevents sulphate attack of lime-stabilised kaolinite[J]. Cement and Concrete Research, 1999, 29(7): 975-982.
    [11] JAMES R, KAMRUZZAMAN A H M, HAQUEAND A, et al. Behaviour of lime-slag-treated clay[J]. Ground Improvement, 2008, 161(4): 207-216.
    [12] OBUZOR G N, KINUTHIA J M, ROBINSON R B. Enhancing the durability of flooded low-capacity soils by utilizing lime-activated ground granulated blastfurnace slag (GGBS)[J]. Engineering Geology, 2011, 123(3): 179-186.
    [13] NIDZAM R M, KINUTHIA J M. Sustainable soil stabilisation with blastfurnace slag-a review[J]. Construction Materials, 2010, 163(3): 157-165.
    [14] OBUZOR G N, KINUTHIA J M, ROBINSON R B. Utilisation of lime activated GGBS to reduce the deleterious effect of flooding on stabilised road structural materials: A laboratory simulation[J]. Engineering Geology, 2011, 122(3): 334-338.
    [15] YI Y L, LISKA M, AL-TABBAA A. Initial investigation into the use of GGBS-MgO in soil stabilisation[C]// Proceedings of the 4th International Conference on Grouting and Deep Mixing. New Orleans: ASCE, 2012.
    [16] 易耀林. 基于可持续发展的搅拌桩系列新技术与理论[D]. 南京: 东南大学, 2013. (YI Yao-lin. Sustainable deep mixing methods and theory[D]. Nanjing: Southeast University, 2013. (in Chinese))
    [17] OUF M E. Stabilisation of clay sub-grade soils using ground granulated blastfurnace slag[D]. Leeds: University of Leeds, 2001.
    [18] TAYLOR H F W. Cement chemistry[M]. London: Academic Press, 1990.
    [19] WU X, JIANG W, ROY D M. Early activation and properties of slag cement[J]. Cement and Concrete Research, 1990, 20(6): 961-974.
    [20] SONG S, SOHN D, JENNINGS H M, et al. Hydration of alkali-activated ground granulated blastfurnace slag[J]. Journal of Materials Science, 2000, 35(1): 249-257.
    [21] BEN HAHA M, LOTHENBACH B, LE SAOUT G, et al. Influence of slagchemistry on the hydration of alkali-activatedblast-furnaceslag. Part I: Effect of MgO[J]. Cement and Concrete Research, 2011, 41(9): 955-963.
    [22] OTI J E, KINUTHIA J M, BAI J. Compressive strength and microstructural analysis of unfired clay masonry bricks[J]. Engineering Geology, 2009, 109(3): 230-240.
计量
  • 文章访问数:  645
  • HTML全文浏览量:  3
  • PDF下载量:  962
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-29
  • 发布日期:  2013-11-24

目录

    /

    返回文章
    返回