Citation: | YI Yao-lin, QING Xue-wen, ZHUANG Yan, LIU Song-yu, DU Guang-yin. Utilization of GGBS in stabilization of soft soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 829-833. |
[1] |
CDIT. The deep mixing method: principle, design and construction [M]. Tokyo: A A Balkema Publishers, 2002.
|
[2] |
HEWLETT P C. Lea's chemistry of cement and concrete (4th edition) [M]. Oxford: Elsevier, 1998.
|
[3] |
HIGGINS D D. GGBS and sustainability[J]. Construction Materials, 2007, 160(3): 99-101.
|
[4] |
SHI C J, KRIVENKO P V, ROY D. Alkali-activated cements and concretes[M]. London: T aylor & Francis, 2006.
|
[5] |
HIGGINS D D. Soil stabilisation with ground granulated blastfurnace slag[R]. Surrey: UK Cementitious Slag makers Association report, 2005.
|
[6] |
HAKKINEN T. The influence of slag content on the microstructure, permeability and mechanical properties of concrete. Part 1: Microstructural studies and basic mechanical properties[J]. Cement and Concrete Research, 1993, 23(2): 407-421.
|
[7] |
WILD S, KINUTHIA J M, ROBINSON R B, el al. Effects of ground granulated blast furnace slag (GGBS) on the strength and swelling properties of lime-stabilized kaolinite in the presence of sulphates[J]. Clay Minerals, 1996, 31(3): 423-433.
|
[8] |
WILD S, KINUTHIA J M, JONES G I, et al. Effects of partial substitution of lime with ground granulated blast furnace slag (GGBS) on the strength properties of lime stabilised sulphate-bearing clay soils[J]. Engineering Geology, 1998, 51(1): 37-53.
|
[9] |
WILD S, KINUTHIA J M, JONES G I, et al. Suppression of swelling associated with ettringite formation in lime stabilized sulphate bearing clay soils by partial substitution of lime with granulated blastfurnace slag[J]. Engineering Geology, 1999, 51(4): 257-277.
|
[10] |
TASONG W A, WILD S, TILLEY R J D. Mechanism by which ground granulated blastfurnace slag prevents sulphate attack of lime-stabilised kaolinite[J]. Cement and Concrete Research, 1999, 29(7): 975-982.
|
[11] |
JAMES R, KAMRUZZAMAN A H M, HAQUEAND A, et al. Behaviour of lime-slag-treated clay[J]. Ground Improvement, 2008, 161(4): 207-216.
|
[12] |
OBUZOR G N, KINUTHIA J M, ROBINSON R B. Enhancing the durability of flooded low-capacity soils by utilizing lime-activated ground granulated blastfurnace slag (GGBS)[J]. Engineering Geology, 2011, 123(3): 179-186.
|
[13] |
NIDZAM R M, KINUTHIA J M. Sustainable soil stabilisation with blastfurnace slag-a review[J]. Construction Materials, 2010, 163(3): 157-165.
|
[14] |
OBUZOR G N, KINUTHIA J M, ROBINSON R B. Utilisation of lime activated GGBS to reduce the deleterious effect of flooding on stabilised road structural materials: A laboratory simulation[J]. Engineering Geology, 2011, 122(3): 334-338.
|
[15] |
YI Y L, LISKA M, AL-TABBAA A. Initial investigation into the use of GGBS-MgO in soil stabilisation[C]// Proceedings of the 4th International Conference on Grouting and Deep Mixing. New Orleans: ASCE, 2012.
|
[16] |
易耀林. 基于可持续发展的搅拌桩系列新技术与理论[D]. 南京: 东南大学, 2013. (YI Yao-lin. Sustainable deep mixing methods and theory[D]. Nanjing: Southeast University, 2013. (in Chinese))
|
[17] |
OUF M E. Stabilisation of clay sub-grade soils using ground granulated blastfurnace slag[D]. Leeds: University of Leeds, 2001.
|
[18] |
TAYLOR H F W. Cement chemistry[M]. London: Academic Press, 1990.
|
[19] |
WU X, JIANG W, ROY D M. Early activation and properties of slag cement[J]. Cement and Concrete Research, 1990, 20(6): 961-974.
|
[20] |
SONG S, SOHN D, JENNINGS H M, et al. Hydration of alkali-activated ground granulated blastfurnace slag[J]. Journal of Materials Science, 2000, 35(1): 249-257.
|
[21] |
BEN HAHA M, LOTHENBACH B, LE SAOUT G, et al. Influence of slagchemistry on the hydration of alkali-activatedblast-furnaceslag. Part I: Effect of MgO[J]. Cement and Concrete Research, 2011, 41(9): 955-963.
|
[22] |
OTI J E, KINUTHIA J M, BAI J. Compressive strength and microstructural analysis of unfired clay masonry bricks[J]. Engineering Geology, 2009, 109(3): 230-240.
|
1. |
刘雪莹,俞缙,周先齐,姚玮,任崇鸿,蔡燕燕. 一种新的岩石各向异性蠕变-渗透率模型. 岩土工程学报. 2025(02): 275-283 .
![]() | |
2. |
郭建春,张涛,武玺,赵志红,李宗源,曾杰. 煤层气压裂水平井生产动态分析及其渗透率协同演化机制. 煤炭学报. 2025(01): 516-531 .
![]() | |
3. |
张磊丽,蔡婷婷,石磊,姜玉龙,夏瑾. 不同温度-围压-气体压力下煤体蠕变-渗流演化规律. 煤矿安全. 2024(03): 36-45 .
![]() | |
4. |
赵一博. 计算多孔介质流线迂曲度及其分形维数的新几何模型. 材料导报. 2024(S2): 282-286 .
![]() | |
5. |
李钊,倪冠华,杨威,温永瓒,王刚,刘震,王振洋. 不同冲击倾向性煤体孔隙结构及瓦斯吸附特征研究. 煤炭科学技术. 2024(S2): 56-70 .
![]() | |
6. |
张学博,王豪,杨明,王攀,韩林秀. 抽采钻孔失稳坍塌对瓦斯抽采的影响机制研究及应用. 煤炭学报. 2023(08): 3102-3115 .
![]() | |
7. |
王科文. 瓦斯抽采钻孔新型封孔工艺试验研究. 山东煤炭科技. 2023(09): 128-130 .
![]() | |
8. |
许江,饶豪魁,彭守建,陈奕安,陈灿灿,马天宇. 三轴应力条件下凝灰岩广义应力松弛流变模型的构建. 采矿与安全工程学报. 2023(06): 1264-1272 .
![]() |