Experimental studies on influence of mineral composition on frictional characteristics of polished rocks
-
摘要: 在对 8 种岩石矿物成分 XRD 分析和使用三维白光干涉仪对其抛光表面进行表面形貌表征的基础上,在自行设计的试验装置上,对自然、饱水和干燥状态下 8 种岩石试块的摩擦系数进行了试验研究。试验结果表明:抛光岩石表面的摩擦系数和其矿物成分相关。在多矿物组成成分的硅酸盐岩中,饱水与自然状态时的摩擦系数增加幅度大于干燥和自然状态时摩擦系数减小的幅度。在多矿物组成成分的碳酸盐岩中,饱水与自然状态时的摩擦系数增加幅度小于干燥和自然状态时摩擦系数减小的幅度。在 3 种不同状态下单矿物岩石的摩擦系数比多矿物岩石的摩擦系数变化幅度大。Abstract: Analyzing the mineral composition of 8 kinds of rock types by XRD, and characterizing surface morphology of polished rocks by 3-D white light interferometer, frictional coefficients of 8 kinds of rock types in natural, saturated and dry conditions are investigated by means of the self-designed test apparatus. The experimental results indicate that the frictional coefficients relate to the mineral composition. The increment amplitude of frictional coefficients under saturated and natural conditions is greater than that under dry and natural conditions for silicates composed by multiple-stripe minerals. The increment amplitude of frictional coefficients under saturated and natural conditions is much smaller than that under dry and natural conditions for carbonates composed by multiple-stripe minerals. The variation of frictional coefficients of rocks composed by homogeneous mineral is larger than that of rocks composed by multiple-stripe minerals.
-
Keywords:
- rock /
- polished surface /
- mineral composition /
- frictional coefficient
-
[1] KULATILAKE P, BALASINGAM P, PARK J, et al. Natural rock joint roughness quantification through fractal techniques[J]. Geotechnical and Geological Engineering. 2006, 24 (5): 1181 – 1202. [2] JIANG Yu-jing, LI Bo, TANABASHI Y. Estimating the relation between surface roughness and mechanical properties of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences. 2006, 43 (6): 837 – 846. [3] KLICHE C A. The effect of rock discontinuity surface roughness on shear strength[D]. Arizona: The University of Arizona, 1991. [4] JAEGER J C, COOK N G W, ZIMMERMAN R W. Fundamentals of Rock Mechanics[M]. 4th ed. Malden: Blackwell Publishing, 2007. [5] NASUNO S, KUDROLLI A, BAK A, et al. Time-resolved studies of stick-slip friction in sheared granular layers[J]. Physical Review E, 1998, 58 (2): 2161 – 2171. [6] SCHELLART W P. Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling[J]. Tectonophysics, 2000, 324 (1-2): 1 – 16. [7] BLANPIED M L, LOCKNER D A, BYERLEE J D. Frictional slip of granite at hydrothermal conditions[J]. Journal of Geophysical Research. 1995, 100 (B7): 13045 – 13064. [8] MARONE C, HOBBS B E, ORD A. Coulomb constitutive laws for friction: Contrasts in frictional behavior for distributed and localized shear[J]. Pure and Applied Geophysics, 1992, 139 (2): 195 – 214. [9] 殷有泉, 黄杰藩, 王康平. 房山大理岩本构性质的实验研究 [J]. 岩石力学与工程学报. 1993, 12 (3): 240 – 248. (YIN You-quan, HUANG Jie-fan, WANG Kang-ping. Experimental study of the constitutive behaviors of Fangshan marble[J]. Chinese Journal of Rock Mechanics and Engineering, 1993, 12 (3): 240 – 248. (in Chinese)) [10] 何昌荣. 两种摩擦本构关系的对比研究 [J]. 地震地质. 1999, 21 (2): 137 – 146. (HE Chang-rong. Comparing two types of rate and state dependent friction laws[J]. Seismology and Geology , 1999, 21 (2): 137 – 146. (in Chinese)) [11] 陈铁民, 陶振宇. 岩石摩擦机制及基本摩擦角 [J]. 武汉水利电力学院学报. 1992, 25 (2): 25 – 30. (CHEN Tie-min, TAO Zhen-yu. Mechanism of rock friction and its basic friction angle[J]. Journal of Wuhan University of Hydraulic and Electric Engineer, 1992, 25 (2): 25 – 30. (in Chinese)) [12] WANG Wei-bin. Micromechanics of rock friction and wear processes: a theoretical and experimental study[D]. United Columbia: Columbia University, 1994. [13] KONCHITS V V, KOROTKEVICH S V. Formation and frictional properties of boundary lubricating and surface-modified layers at elevated temperatures[J]. Journal of Synthetic Lubrication Tribotest. 2006, 14 (4): 455 – 469. [14] LOGAN J M, TEUFEL L W. The effect of normal stress on the real area of contact during frictional sliding in rocks[J]. Pure and Applied Geophysics. 1986, 124 (3): 471 – 485. [15] HORN H M, DEERE D U. Frictional characteristics of minerals[J]. Geotechnique, 1962, 12 (4): 319 – 335. [16] RAMANA Y V, GOGTE B S. Dependence of coefficient of sliding friction in rocks on lithology and mineral characteristics[J]. Engineering Geology, 1989, 26 (3): 271 – 279. [17] LINDA A. REINEN J D. The frictional behavior of lizardite and antigorite serpentinites: experiments, constitutive models, and implications for natural faults[J]. Pageoph, 1994, 143 (1): 317 – 358. [18] SCRUGGS V J. Frictional constitutive properties and related microstructures of albite, muscovite, biotite and Talc[D]. Rhode Island: Brown University, 1997. [19] MORROW C A, D E M D. The effect of mineral bond strength and adsorbed water on fault gouge frictional strength[J]. Geophysical Research Letters, 2000, 27 (6): 815 – 818. [20] BYERLEE J. Frictions of Rocks[J]. Pageoph, 1978, 116 (1): 615 – 626. -
期刊类型引用(35)
1. 刘新荣,罗新飏,郭雪岩,周小涵,王浩,许彬,郑颖人. 巫山段岸坡水岩劣化特征及危岩失稳破坏模式. 工程地质学报. 2025(01): 240-257 . 百度学术
2. 钱云华,田明,陈伟,苏超,李笑唯. 强震后公路边坡损伤状态评价及稳定性分析. 重庆交通大学学报(自然科学版). 2025(04): 69-78 . 百度学术
3. 杨修. 顺层岩质边坡稳定性及加固方案优化研究. 安徽水利水电职业技术学院学报. 2025(01): 25-32 . 百度学术
4. 许彬,刘新荣,周小涵,韩亚峰,刘俊,谢应坤,邓志云. 软-硬互层岩体节理峰前循环剪切疲劳损伤机理研究. 岩土工程学报. 2024(01): 90-100 . 本站查看
5. 白宇鑫,严加驹,赵森,夏冬,吴朝松. 研山铁矿顺倾含水岩质边坡稳定性与生态修复技术研究. 采矿技术. 2024(01): 111-115 . 百度学术
6. 李笑唯,周晗旭,车爱兰. 电测量法在岩质边坡软弱层损伤累积研究中的应用. 工程地质学报. 2024(02): 657-666 . 百度学术
7. 刘健. 变质岩类顺层边坡破裂迹象及边坡开挖失稳范围研究. 粉煤灰综合利用. 2024(03): 91-96 . 百度学术
8. 李浩,李春艳,张嵩,谢英美. 建筑工程中地质特征及岩土工程支护研究. 能源与环保. 2023(01): 181-186 . 百度学术
9. 蒲松,向龙,廖杭,余涛,姚志刚,方勇,朱牧原,魏力峰,张乾. 极高地应力层状围岩隧道偏压演化规律及围岩控制. 现代隧道技术. 2023(01): 90-99 . 百度学术
10. 雷浩,吴红刚,钱建固,赖天文,纪志阳,梁彧. 空间小净距交叉隧道动力响应振动台试验研究. 振动与冲击. 2023(05): 92-100 . 百度学术
11. 凡耀镔,李晓鹏,张光雄,邹宗山,和铁柱,刘红岩. 循环振动下岩质边坡渐进性破坏规律的数值模拟. 矿业研究与开发. 2023(03): 83-91 . 百度学术
12. 崔芳鹏,武强,李滨,熊晨,刘新荣,李江山,刘小瑜. 多层浅埋煤层开采触发岩溶坡体动力崩滑机制研究. 煤炭科学技术. 2023(02): 317-333 . 百度学术
13. 陈强,张雪萍. 采动作用下黑岱沟露天矿区岩土边坡稳定性研究. 能源与环保. 2023(05): 137-143 . 百度学术
14. 刘新荣,曾夕,许彬,周小涵,刘馨琳,王继文. 贯通型锯齿状节理岩体的剪切力学行为. 土木与环境工程学报(中英文). 2023(05): 1-9 . 百度学术
15. 黄俊辉,刘新荣,许彬,张京亮,梁峰. 多级高陡边坡开挖过程数值模拟及稳定性研究. 公路交通科技. 2022(03): 44-53 . 百度学术
16. 刘新荣,蔺广义,何春梅,许彬,黄俊辉. 循环剪切作用下泥质软岩本构模型研究. 地下空间与工程学报. 2022(02): 386-396 . 百度学术
17. 孙文,梁庆国,乔向进,曹小平,王丽丽. 不同失稳形态黄土边坡的动力响应研究. 铁道学报. 2022(06): 123-130 . 百度学术
18. 许彬,刘新荣,周小涵,刘俊,黄俊辉,王?,曾夕. 消落带岩体劣化下顺层岩质边坡动力响应规律试验研究. 岩土工程学报. 2022(08): 1453-1462 . 本站查看
19. 李险峰. 某顺层岩质边坡开挖支护过程及其稳定性响应研究. 长春工程学院学报(自然科学版). 2022(02): 11-16 . 百度学术
20. 刘新荣,王?,许彬,周小涵,易立,黄俊辉,王子娟. 消落带劣化下含锯齿状结构面岩质边坡动力响应机制研究. 岩石力学与工程学报. 2022(12): 2377-2388 . 百度学术
21. 赵飞,俞松波,李博,石振明. 地震作用下岩质边坡大型振动台试验研究进展. 地球科学. 2022(12): 4498-4512 . 百度学术
22. 刘新荣,许彬,黄俊辉,蔺广义,周小涵,王继文,熊飞. 多形态贯通型岩体结构面宏细观剪切力学行为研究. 岩土工程学报. 2021(03): 406-415 . 本站查看
23. 张永闯. 顺层边坡稳定性影响因素及加固方案比选数值模拟研究. 水科学与工程技术. 2021(01): 69-74 . 百度学术
24. 孙文,梁庆国,乔向进,曹小平,王丽丽. 黄土边坡动力失稳的振动台试验研究. 兰州交通大学学报. 2021(02): 15-22 . 百度学术
25. 陈伟庚,刘洋,王栋,岳茂,张良. 西南山区铁路沿线反倾岩质边坡地震动力响应振动台试验研究. 铁道建筑. 2021(04): 93-96 . 百度学术
26. 刘新荣,许彬,周小涵,谢应坤,何春梅,黄俊辉. 软弱层峰前循环剪切宏细观累积损伤机制研究. 岩土力学. 2021(05): 1291-1303 . 百度学术
27. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看
28. 高明辉,张雅贤,王奇智,赵建青,孙超,周记名,张娜娜. 基于上限定理的含裂缝边坡稳定性图表分析方法. 科学技术与工程. 2021(16): 6830-6837 . 百度学术
29. 冯海明. 离心模型实验下的岩质边坡内部应变分析. 矿产与地质. 2021(03): 566-573 . 百度学术
30. 陈钱,吴和秋,张明,杨龙,吕文韬. 新疆塔县地震触发顺向坡失稳破坏机理研究. 安全与环境工程. 2021(05): 88-95 . 百度学术
31. 刘新荣,许彬,周小涵,易立,曾夕,王继文. 软硬互层岩体结构面宏细观剪切力学特性. 煤炭学报. 2021(09): 2895-2909 . 百度学术
32. 姜超,孙宇超,龚梦洋,李忠鹏. 软弱结构面的赋存条件对露天矿顺层岩质边坡劣化的数值模拟研究. 中国金属通报. 2021(08): 172-175 . 百度学术
33. 安旭,童心豪,刘洋,王翔,丁选明. 高陡边坡沿高程地震动响应演化规律研究. 高速铁路技术. 2020(04): 1-5 . 百度学术
34. 马文礼,刘赟,魏占玺,董顺德. 地震荷载下反倾层状岩质边坡倾倒变形破坏规律及数值模拟研究. 河北工业科技. 2020(05): 318-325 . 百度学术
35. 钟卫平. 某高速公路顺层岩质边坡失稳机理分析及加固措施研究. 公路工程. 2020(06): 250-254 . 百度学术
其他类型引用(31)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 66