Effects of occurrence form of free iron oxide on thermal conductivity of lateritic clay during drying and wetting conditions
-
摘要: 游离氧化铁赋存形式对红黏土热传导性能的影响尚不清楚。利用热探针法对去除游离氧化铁前后原状和压实样的热传导性能进行测试,并结合红黏土在脱、吸湿条件下微观结构特征的演化,探讨了游离氧化铁和制样方式对其热传导性能的影响机制。热传导性能试验结果表明,相同含水率下压实红黏土的热传导系数小于原状样,平均约小4.8%。同条件下去铁后原状样的热传导系数比未去铁试样平均高约29.3%,去除游离氧化铁后原状样的热传导系数在含水率变化曲线上呈现滞回减弱现象。微观试验结果表明,去铁后原状试样的孔隙数量明显少于未去铁试样,未去铁原状样存在少量孔径约为10 μm的较大孔隙,去除游离氧化铁后原状样中较大的孔隙基本上消失。游离氧化铁对红黏土试样热传导性能的影响机制可理解为,游离氧化铁以“包膜”“桥接”和“附着”形式将土粒或团聚体集聚胶结起来,去铁后,部分较大团聚体分散为较小团聚体或土粒,充填土中较大孔隙,从而增加土颗粒间的接触与传热路径。Abstract: The influences of occurrence form of free iron oxide (FIO) on the thermal conductivity of lateritic clay are still unclear. In this study, the thermal probe method is used to measure the thermal conductivity (TC) of undisturbed and compacted specimens before and after removing FIO. Combined with the evolution of microstructural characteristics, the influence mechanism of FIO and the specimen preparation method on TC is investigated. The thermal conductivity test results show that the TC of compacted specimens is lower than that of undisturbed specimens (US) under the same water content, with an average decrease of about 4.8%. After removing FIO, the TC of the US significantly increases, with an average increase of about 29.3%. Moreover, the hysteresis phenomenon between the TC and the volumetric water content of US after FIO removal is weakened. The microscopic test results show that the pore number in US after FIO removal is significantly less than that in untreated specimens. There are a small number of larger pores with a pore size of ~10 μm in US without FIO removal. The larger pores are basically eliminated in US after FIO removal. The mechanism by which FIO affects the TC of lateritic clay can be understood as: FIO can aggregate and bond soil particles or aggregates in the form of "encapsulation", "bridging", and "attachment". After removing FIO, some larger aggregates are dispersed into smaller aggregates or soil particles, which in turn fill the larger pores, increasing the contact and heat transfer paths between soil particles.
-
Keywords:
- lateritic clay /
- free iron oxide /
- occurrence form /
- thermal conductivity /
- soil microstructure
-
-
表 1 试验土样基本物性指标
Table 1 Physical property indexes of soil specimens
土粒相对质量密度 液限/% 塑限/% 缩限/% 体缩率/% 收缩系数 自由膨胀率/% 粒径分布/% 2~0.05 mm 2~0.05 mm 2~0.05 mm 2.74 61.8 38.1 27.1 15.51 0.23 25 24.95 24.95 24.95 表 2 试验土样化学成分
Table 2 Chemical composition of soil specimens
单位:% 红黏土 Al2O3 Fe2O3 SiO2 CaO MgO K2O Na2O 其他 去铁前
原状样26.68 7.19 55.81 0.39 0.56 3.1 0.32 5.95 去铁后
原状样23.54 0.53 60.35 0.13 0.05 4.21 2.86 8.33 表 3 试验土样矿物组成
Table 3 Mineral composition of soil specimens
单位:% 红黏土 高岭石 伊利石 透辉石 长石 白云石 石英 其他 去铁前
原状样30.7 12 8.1 9.9 4.6 34.7 3.1 去铁后
原状样28.4 11.5 0.4 10.6 5.1 41.6 2.4 -
[1] GAO G R. The distribution and geotechnical properties of loess soils, lateritic soils and clayey soils in China[J]. Engineering Geology, 1996, 42(1): 95-104. doi: 10.1016/0013-7952(95)00056-9
[2] KANNO I. Genesis and Classification of Main Genetic Soil Types in Japan[M]. Kyushyu: Agricultural Experimental Station, 1961.
[3] BUOL S W, SANCHEZ P A. Red soils in the Americas: morphology, classification and management[C]// International Symposium on Red Soils, Beijing, 1986.
[4] ESWAREN H. Taxonomy and management related properties of the red soils of Africa[C]// Proceedings of an International Symposium, Harare, 1988.
[5] KETROT D, SUDDHIPRAKARN A, KHEORUENROMNE I, et al. Interactive effects of iron oxides and organic matter on charge properties of red soils in Thailand[J]. Soil Research, 2013, 51(3): 222. doi: 10.1071/SR13021
[6] ZENG Z T, ZHAO Y L, LU H B, et al. Experimental performance study of ground-coupled heat pump system for cooling and heating provision in Karst Region[J]. Energy and Buildings, 2018, 158: 971-986. doi: 10.1016/j.enbuild.2017.10.071
[7] 高国瑞. 中国红土的微结构和工程性质[J]. 岩土工程学报, 1985, 7(5): 10-21. doi: 10.3321/j.issn:1000-4548.1985.05.002 GAO Guorui. Microstructural and engineering properties of Chinese laterite[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(5): 10-21. (in Chinese) doi: 10.3321/j.issn:1000-4548.1985.05.002
[8] 孔令伟, 罗鸿禧. 游离氧化铁形态转化对红黏土工程性质的影响[J]. 岩土力学, 1993(4): 25-39. KONG Lingwei, LUO Hongxi. Effect of the conversion in form of free iron oxide on the engineering property of the red clay[J]. China Industrial Economics, 1993(4): 25-39. (in Chinese)
[9] 王继庄. 游离氧化铁对红黏土工程特性的影响[J]. 岩土工程学报, 1983, 5(1): 147-156. doi: 10.3321/j.issn:1000-4548.1983.01.013 WANG Jizhuang. The effects of free iron oxides on the engineering properties of red clay[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(1): 147-156. (in Chinese) doi: 10.3321/j.issn:1000-4548.1983.01.013
[10] 孔令伟, 罗鸿禧, 袁建新. 红黏土有效胶结特征的初步研究[J]. 岩土工程学报, 1995, 17(5): 42-47. doi: 10.3321/j.issn:1000-4548.1995.05.007 KONG Lingwei, LUO Hongxi, YUAN Jianxin. Preliminary study on the effective cementation characteristics of the red clay[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 42-47. (in Chinese) doi: 10.3321/j.issn:1000-4548.1995.05.007
[11] 谈云志, 占少虎, 胡焱, 等. 石灰-红黏土互损行为与偏高岭土减损机制[J]. 岩土力学, 2021, 42(1): 104-112. TAN Yunzhi, ZHAN Shaohu, HU Yan, et al. Behavior of lime-laterite interaction and anti-erosion mechanism of Metakaolin[J]. Rock and Soil Mechanics, 2021, 42(1): 104-112. (in Chinese)
[12] 熊毅. 土壤胶体[M]. 北京: 科学出版社, 1983. XIONG Yi. Soil Colloid[M]. Beijing: Science Press, 1983. (in Chinese)
[13] 牛庚, 孙德安, 韦昌富, 等. 游离氧化铁对红黏土持水特性的影响[J]. 岩土工程学报, 2018, 40(12): 2318-2324. doi: 10.11779/CJGE201812021 NIU Geng, SUN Dean, WEI Changfu, et al. Effects of free iron oxide on water retention behavior of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2318-2324. (in Chinese) doi: 10.11779/CJGE201812021
[14] 张文博, 柏巍, 孔令伟, 等. 淋溶时间对红黏土物理力学特性的影响[J]. 岩土力学, 2022, 43(2): 443-452. ZHANG Wenbo, BAI Wei, KONG Lingwei, et al. Effect of leaching time on physical and mechanical characteristics of lateritic soil[J]. Rock and Soil Mechanics, 2022, 43(2): 443-452. (in Chinese)
[15] 张先伟, 孔令伟. 氧化铁胶体与黏土矿物的交互作用及其对黏土土性影响[J]. 岩土工程学报, 2014, 36(1): 65-74. doi: 10.11779/CJGE201401004 ZHANG Xianwei, KONG Lingwei. Interaction between iron oxide colloids and clay minerals and its effect on properties of clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 65-74. (in Chinese) doi: 10.11779/CJGE201401004
[16] 刘莉, 颜荣涛, 牛富俊, 等. 游离氧化铁对红黏土力学特性的影响[J]. 桂林理工大学学报, 2021, 41(4): 810-816. doi: 10.3969/j.issn.1674-9057.2021.04.012 LIU Li, YAN Rongtao, NIU Fujun, et al. Effect of free iron oxide on the strength and deformation characteristics of red clay[J]. Journal of Guilin University of Technology, 2021, 41(4): 810-816. (in Chinese) doi: 10.3969/j.issn.1674-9057.2021.04.012
[17] 刘鹏, 黄英, 金克盛, 等. 云南红土铁离子迁移的试验研究[J]. 中国地质灾害与防治学报, 2012, 23(3): 114-119. LIU Peng, HUANG Ying, JIN Kesheng, et al. The test study of the iron ions migration in Yunnan laterite[J]. The Chinese Journal of Geological Hazard and Control, 2012, 23(3): 114-119. (in Chinese)
[18] NIAN T K, JIAO H B, FAN N, et al. Microstructure analysis on the dynamic behavior of marine clay in the South China Sea[J]. Marine Georesources \ & Geotechnology, 2020, 38(3): 349-362.
[19] SCHWERTMANN U, LATHAM M. Properties of iron oxides in some new Caledonian oxisols[J]. Geoderma, 1986, 39(2): 105-123.
[20] ZHANG X W, KONG L W, CUI X L, et al. Occurrence characteristics of free iron oxides in soil microstructure: evidence from XRD, SEM and EDS[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(4): 1493-1503. doi: 10.1007/s10064-015-0781-2
[21] FAROUKI O T. Thermal Properties of Soils[M]. Clausthal-Zellerfeld: Trans Tech Publications, 1986.
[22] SUN D A, GAO Y, ZHOU A N, et al. Soil-water retention curves and microstructures of undisturbed and compacted Guilin lateritic clay[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(2): 781-791.
[23] 徐云山, 肖子龙, 孙德安, 等. 土体导热系数温度效应及其预测模型[J]. 岩土工程学报, 2023, 45(6): 1180-1189. XU Yunshan, XIAO Zilong, SUN Dean, et al. Temperature effects of soil thermal conductivity and its predictive model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1180-1189. (in Chinese)
[24] 张虎元, 赵秉正, 童艳梅. 混合型缓冲砌块导热性能及其均匀性研究[J]. 岩土力学, 2020, 41(增刊1): 1-9, 18. ZHANG Huyuan, ZHAO Bingheng, TONG Yanmei. Thermal conductivity and uniformity of hybrid buffer blocks[J]. Rock and Soil Mechanics, 2020, 41(S1): 1-9, 18. (in Chinese)
[25] 陆浩杰, 孔纲强, 刘汉龙, 等. 黏土热–力学特性对能量桩力学特性的影响[J]. 岩土工程学报, 2022, 44(1): 53-61. LU Haojie, KONG Gangqiang, LIU Hanlong, et al. Influences of thermo-mechanical properties of clay on mechanical responses of energy piles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 53-61. (in Chinese)
[26] 金宗川, 王雪晴, 乌效鸣, 等. 土壤热参数及其影响因素测试分析[J]. 岩土力学, 2022, 43(5): 1335-1340. JIN Zongchuan, WANG Xueqing, WU Xiaoming, et al. Testing and analysis of soil thermal parameters and their influencing factors[J]. Rock and Soil Mechanics, 2022, 43(5): 1335-1340. (in Chinese)
[27] 叶万军, 董西好, 杨更社, 等. 含水率和干密度对黄土热参数影响的试验研究[J]. 岩土力学, 2017, 38(3): 656-662. YE Wanjun, DONG Xihao, YANG Gengshe, et al. Effect of moisture content and dry density on thermal parameters of loess[J]. Rock and Soil Mechanics, 2017, 38(3): 656-662. (in Chinese)
[28] CÔTÉ J, KONRAD J M. A generalized Thermal Conductivity Model for Soils and construction Materials[M]. Ottawa: NRC Research Press, 2005.
[29] 曾召田, 吕海波, 赵艳林, 等. 广西红黏土热导率测试及理论预测模型研究[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3525-3534. ZENG Zhaotian, LÜ Haibo, ZHAO Yanlin, et al. Experimental research on thermal conductivity of red clay in Guangxi and its theory prediction models[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3525-3534. (in Chinese)
[30] 曾召田, 林铭宇, 孙德安, 等. 碱-热条件下膨润土缓冲材料导热系数演化及微观特征[J]. 岩土工程学报, 2024, 46(7): 1408-1417. ZENG Zhaotian, LIN Mingyu, SUN Dean, et al. Microscopic analysis of thermal conductivity of bentonite as buffer materials under alkaline-thermal conditions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1408-1417. (in Chinese)
[31] WIRIYAKITNATEEKUL W, SUDDHIPRAKARN A, KHEORUENROMNE I, et al. Iron oxides in tropical soils on various parent materials[J]. Clay Minerals, 2007, 42(4): 437-451.
[32] JIANG Z X, LIU L A. A pretreatment method for grain size analysis of red mudstones[J]. Sedimentary Geology, 2011, 241(1): 13-21.
[33] 非饱和土试验方法标准: T/CECS 1337—2023[S]. 北京: 中国建筑工业出版社, 2023. Standard for Unsaturated Soil Testing Method: T/CECS 1337—2023[S]. Beijing: China Architecture & Building Press, 2023. (in Chinese)
[34] JU Z Q, REN T S, HU C S. Soil thermal conductivity as influenced by aggregation at intermediate water contents[J]. Soil Science Society of America Journal, 2011, 75(1): 26-29.
[35] USOWICZ B, LIPIEC J, USOWICZ J B, et al. Effects of aggregate size on soil thermal conductivity: comparison of measured and model-predicted data[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 536-541.
-
期刊类型引用(5)
1. 李晓强,梁靖宇,路德春,苗金波,杜修力. 非饱和土的非正交弹塑性本构模型. 中国科学:技术科学. 2022(07): 1048-1064 . 百度学术
2. 刘祎,蔡国庆,李舰,赵成刚. 非饱和土热–水–力全耦合本构模型及其验证. 岩土工程学报. 2021(03): 547-555 . 本站查看
3. 王壹敏,陈志敏,孙胜旗,赵运铎,张常书. 基于邓肯-张模型的低液限粉质黏土-砂的强度规律. 科学技术与工程. 2021(08): 3252-3257 . 百度学术
4. 胡小荣,蔡晓锋,瞿鹏. 基于坐标平移法的正常固结非饱和土三剪弹塑性本构模型. 应用数学和力学. 2021(08): 813-831 . 百度学术
5. 杨光昌,白冰,刘洋,陈佩佩. 描述饱和砂土剪切特性的一个热力学本构模型. 哈尔滨工业大学学报. 2021(11): 93-100 . 百度学术
其他类型引用(7)