• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Yunshan, XIAO Zilong, SUN Dean, LI Jianping. Effects of occurrence form of free iron oxide on thermal conductivity of lateritic clay during drying and wetting conditions[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 811-819. DOI: 10.11779/CJGE20240058
Citation: XU Yunshan, XIAO Zilong, SUN Dean, LI Jianping. Effects of occurrence form of free iron oxide on thermal conductivity of lateritic clay during drying and wetting conditions[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 811-819. DOI: 10.11779/CJGE20240058

Effects of occurrence form of free iron oxide on thermal conductivity of lateritic clay during drying and wetting conditions

More Information
  • Received Date: January 16, 2024
  • Available Online: August 20, 2024
  • The influences of occurrence form of free iron oxide (FIO) on the thermal conductivity of lateritic clay are still unclear. In this study, the thermal probe method is used to measure the thermal conductivity (TC) of undisturbed and compacted specimens before and after removing FIO. Combined with the evolution of microstructural characteristics, the influence mechanism of FIO and the specimen preparation method on TC is investigated. The thermal conductivity test results show that the TC of compacted specimens is lower than that of undisturbed specimens (US) under the same water content, with an average decrease of about 4.8%. After removing FIO, the TC of the US significantly increases, with an average increase of about 29.3%. Moreover, the hysteresis phenomenon between the TC and the volumetric water content of US after FIO removal is weakened. The microscopic test results show that the pore number in US after FIO removal is significantly less than that in untreated specimens. There are a small number of larger pores with a pore size of ~10 μm in US without FIO removal. The larger pores are basically eliminated in US after FIO removal. The mechanism by which FIO affects the TC of lateritic clay can be understood as: FIO can aggregate and bond soil particles or aggregates in the form of "encapsulation", "bridging", and "attachment". After removing FIO, some larger aggregates are dispersed into smaller aggregates or soil particles, which in turn fill the larger pores, increasing the contact and heat transfer paths between soil particles.
  • [1]
    GAO G R. The distribution and geotechnical properties of loess soils, lateritic soils and clayey soils in China[J]. Engineering Geology, 1996, 42(1): 95-104. doi: 10.1016/0013-7952(95)00056-9
    [2]
    KANNO I. Genesis and Classification of Main Genetic Soil Types in Japan[M]. Kyushyu: Agricultural Experimental Station, 1961.
    [3]
    BUOL S W, SANCHEZ P A. Red soils in the Americas: morphology, classification and management[C]// International Symposium on Red Soils, Beijing, 1986.
    [4]
    ESWAREN H. Taxonomy and management related properties of the red soils of Africa[C]// Proceedings of an International Symposium, Harare, 1988.
    [5]
    KETROT D, SUDDHIPRAKARN A, KHEORUENROMNE I, et al. Interactive effects of iron oxides and organic matter on charge properties of red soils in Thailand[J]. Soil Research, 2013, 51(3): 222. doi: 10.1071/SR13021
    [6]
    ZENG Z T, ZHAO Y L, LU H B, et al. Experimental performance study of ground-coupled heat pump system for cooling and heating provision in Karst Region[J]. Energy and Buildings, 2018, 158: 971-986. doi: 10.1016/j.enbuild.2017.10.071
    [7]
    高国瑞. 中国红土的微结构和工程性质[J]. 岩土工程学报, 1985, 7(5): 10-21. doi: 10.3321/j.issn:1000-4548.1985.05.002

    GAO Guorui. Microstructural and engineering properties of Chinese laterite[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(5): 10-21. (in Chinese) doi: 10.3321/j.issn:1000-4548.1985.05.002
    [8]
    孔令伟, 罗鸿禧. 游离氧化铁形态转化对红黏土工程性质的影响[J]. 岩土力学, 1993(4): 25-39.

    KONG Lingwei, LUO Hongxi. Effect of the conversion in form of free iron oxide on the engineering property of the red clay[J]. China Industrial Economics, 1993(4): 25-39. (in Chinese)
    [9]
    王继庄. 游离氧化铁对红黏土工程特性的影响[J]. 岩土工程学报, 1983, 5(1): 147-156. doi: 10.3321/j.issn:1000-4548.1983.01.013

    WANG Jizhuang. The effects of free iron oxides on the engineering properties of red clay[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(1): 147-156. (in Chinese) doi: 10.3321/j.issn:1000-4548.1983.01.013
    [10]
    孔令伟, 罗鸿禧, 袁建新. 红黏土有效胶结特征的初步研究[J]. 岩土工程学报, 1995, 17(5): 42-47. doi: 10.3321/j.issn:1000-4548.1995.05.007

    KONG Lingwei, LUO Hongxi, YUAN Jianxin. Preliminary study on the effective cementation characteristics of the red clay[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 42-47. (in Chinese) doi: 10.3321/j.issn:1000-4548.1995.05.007
    [11]
    谈云志, 占少虎, 胡焱, 等. 石灰-红黏土互损行为与偏高岭土减损机制[J]. 岩土力学, 2021, 42(1): 104-112.

    TAN Yunzhi, ZHAN Shaohu, HU Yan, et al. Behavior of lime-laterite interaction and anti-erosion mechanism of Metakaolin[J]. Rock and Soil Mechanics, 2021, 42(1): 104-112. (in Chinese)
    [12]
    熊毅. 土壤胶体[M]. 北京: 科学出版社, 1983.

    XIONG Yi. Soil Colloid[M]. Beijing: Science Press, 1983. (in Chinese)
    [13]
    牛庚, 孙德安, 韦昌富, 等. 游离氧化铁对红黏土持水特性的影响[J]. 岩土工程学报, 2018, 40(12): 2318-2324. doi: 10.11779/CJGE201812021

    NIU Geng, SUN Dean, WEI Changfu, et al. Effects of free iron oxide on water retention behavior of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2318-2324. (in Chinese) doi: 10.11779/CJGE201812021
    [14]
    张文博, 柏巍, 孔令伟, 等. 淋溶时间对红黏土物理力学特性的影响[J]. 岩土力学, 2022, 43(2): 443-452.

    ZHANG Wenbo, BAI Wei, KONG Lingwei, et al. Effect of leaching time on physical and mechanical characteristics of lateritic soil[J]. Rock and Soil Mechanics, 2022, 43(2): 443-452. (in Chinese)
    [15]
    张先伟, 孔令伟. 氧化铁胶体与黏土矿物的交互作用及其对黏土土性影响[J]. 岩土工程学报, 2014, 36(1): 65-74. doi: 10.11779/CJGE201401004

    ZHANG Xianwei, KONG Lingwei. Interaction between iron oxide colloids and clay minerals and its effect on properties of clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 65-74. (in Chinese) doi: 10.11779/CJGE201401004
    [16]
    刘莉, 颜荣涛, 牛富俊, 等. 游离氧化铁对红黏土力学特性的影响[J]. 桂林理工大学学报, 2021, 41(4): 810-816. doi: 10.3969/j.issn.1674-9057.2021.04.012

    LIU Li, YAN Rongtao, NIU Fujun, et al. Effect of free iron oxide on the strength and deformation characteristics of red clay[J]. Journal of Guilin University of Technology, 2021, 41(4): 810-816. (in Chinese) doi: 10.3969/j.issn.1674-9057.2021.04.012
    [17]
    刘鹏, 黄英, 金克盛, 等. 云南红土铁离子迁移的试验研究[J]. 中国地质灾害与防治学报, 2012, 23(3): 114-119.

    LIU Peng, HUANG Ying, JIN Kesheng, et al. The test study of the iron ions migration in Yunnan laterite[J]. The Chinese Journal of Geological Hazard and Control, 2012, 23(3): 114-119. (in Chinese)
    [18]
    NIAN T K, JIAO H B, FAN N, et al. Microstructure analysis on the dynamic behavior of marine clay in the South China Sea[J]. Marine Georesources \ & Geotechnology, 2020, 38(3): 349-362.
    [19]
    SCHWERTMANN U, LATHAM M. Properties of iron oxides in some new Caledonian oxisols[J]. Geoderma, 1986, 39(2): 105-123.
    [20]
    ZHANG X W, KONG L W, CUI X L, et al. Occurrence characteristics of free iron oxides in soil microstructure: evidence from XRD, SEM and EDS[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(4): 1493-1503. doi: 10.1007/s10064-015-0781-2
    [21]
    FAROUKI O T. Thermal Properties of Soils[M]. Clausthal-Zellerfeld: Trans Tech Publications, 1986.
    [22]
    SUN D A, GAO Y, ZHOU A N, et al. Soil-water retention curves and microstructures of undisturbed and compacted Guilin lateritic clay[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(2): 781-791.
    [23]
    徐云山, 肖子龙, 孙德安, 等. 土体导热系数温度效应及其预测模型[J]. 岩土工程学报, 2023, 45(6): 1180-1189.

    XU Yunshan, XIAO Zilong, SUN Dean, et al. Temperature effects of soil thermal conductivity and its predictive model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1180-1189. (in Chinese)
    [24]
    张虎元, 赵秉正, 童艳梅. 混合型缓冲砌块导热性能及其均匀性研究[J]. 岩土力学, 2020, 41(增刊1): 1-9, 18.

    ZHANG Huyuan, ZHAO Bingheng, TONG Yanmei. Thermal conductivity and uniformity of hybrid buffer blocks[J]. Rock and Soil Mechanics, 2020, 41(S1): 1-9, 18. (in Chinese)
    [25]
    陆浩杰, 孔纲强, 刘汉龙, 等. 黏土热–力学特性对能量桩力学特性的影响[J]. 岩土工程学报, 2022, 44(1): 53-61.

    LU Haojie, KONG Gangqiang, LIU Hanlong, et al. Influences of thermo-mechanical properties of clay on mechanical responses of energy piles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 53-61. (in Chinese)
    [26]
    金宗川, 王雪晴, 乌效鸣, 等. 土壤热参数及其影响因素测试分析[J]. 岩土力学, 2022, 43(5): 1335-1340.

    JIN Zongchuan, WANG Xueqing, WU Xiaoming, et al. Testing and analysis of soil thermal parameters and their influencing factors[J]. Rock and Soil Mechanics, 2022, 43(5): 1335-1340. (in Chinese)
    [27]
    叶万军, 董西好, 杨更社, 等. 含水率和干密度对黄土热参数影响的试验研究[J]. 岩土力学, 2017, 38(3): 656-662.

    YE Wanjun, DONG Xihao, YANG Gengshe, et al. Effect of moisture content and dry density on thermal parameters of loess[J]. Rock and Soil Mechanics, 2017, 38(3): 656-662. (in Chinese)
    [28]
    CÔTÉ J, KONRAD J M. A generalized Thermal Conductivity Model for Soils and construction Materials[M]. Ottawa: NRC Research Press, 2005.
    [29]
    曾召田, 吕海波, 赵艳林, 等. 广西红黏土热导率测试及理论预测模型研究[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3525-3534.

    ZENG Zhaotian, LÜ Haibo, ZHAO Yanlin, et al. Experimental research on thermal conductivity of red clay in Guangxi and its theory prediction models[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3525-3534. (in Chinese)
    [30]
    曾召田, 林铭宇, 孙德安, 等. 碱-热条件下膨润土缓冲材料导热系数演化及微观特征[J]. 岩土工程学报, 2024, 46(7): 1408-1417.

    ZENG Zhaotian, LIN Mingyu, SUN Dean, et al. Microscopic analysis of thermal conductivity of bentonite as buffer materials under alkaline-thermal conditions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1408-1417. (in Chinese)
    [31]
    WIRIYAKITNATEEKUL W, SUDDHIPRAKARN A, KHEORUENROMNE I, et al. Iron oxides in tropical soils on various parent materials[J]. Clay Minerals, 2007, 42(4): 437-451.
    [32]
    JIANG Z X, LIU L A. A pretreatment method for grain size analysis of red mudstones[J]. Sedimentary Geology, 2011, 241(1): 13-21.
    [33]
    非饱和土试验方法标准: T/CECS 1337—2023[S]. 北京: 中国建筑工业出版社, 2023.

    Standard for Unsaturated Soil Testing Method: T/CECS 1337—2023[S]. Beijing: China Architecture & Building Press, 2023. (in Chinese)
    [34]
    JU Z Q, REN T S, HU C S. Soil thermal conductivity as influenced by aggregation at intermediate water contents[J]. Soil Science Society of America Journal, 2011, 75(1): 26-29.
    [35]
    USOWICZ B, LIPIEC J, USOWICZ J B, et al. Effects of aggregate size on soil thermal conductivity: comparison of measured and model-predicted data[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 536-541.
  • Cited by

    Periodical cited type(10)

    1. 申林方,巫益,刘文连,李泽,王志良. 化学溶液长期浸泡作用下灰岩溶蚀劣化研究. 地下空间与工程学报. 2024(01): 82-90 .
    2. 贾蓬,毛松泽,钱一锦,卢佳亮. 不同加载速率下冻融砂岩的动态劈裂特性. 东北大学学报(自然科学版). 2024(01): 111-119 .
    3. 杨康辉,吴志鑫,苏叶茂,刘少锐,郑靖,周仲荣. 仿生侵蚀介质对滚刀/大理岩滚动摩擦磨损行为的影响. 表面技术. 2024(09): 117-126 .
    4. 赵文环,陈剑,周泽卿. 一维动静组合加载下灰岩力学特性及能量耗散分析. 现代矿业. 2024(05): 235-239 .
    5. 张佳男,杨雪,陈北辰. 实验室模拟石质文物老化试验的研究进展. 首都师范大学学报(自然科学版). 2024(06): 62-73 .
    6. 平琦,胡薇,后健民. 弱酸腐蚀下含孔砂岩动态压缩力学特性试验研究. 河南城建学院学报. 2024(06): 1-7+34 .
    7. 谢森林,万文,周宏伟,贾文豪,张雷,魏青,陈伟. 酸腐蚀条件下石膏岩分数阶蠕变本构模型研究. 力学与实践. 2022(02): 266-275 .
    8. 宁建国,李壮,王俊,邢闯闯,沈圳. 动态拉应力波作用下锚固体力学响应试验研究. 采矿与安全工程学报. 2022(04): 731-740 .
    9. 赵宁,董硕,陈熙宇,殷达,刘若涛,荣冠. 弱风化花岗岩的动态力学特性试验研究. 三峡大学学报(自然科学版). 2022(05): 62-70 .
    10. 马涛,丁梧秀,王鸿毅,陈桂香,陈华军,闫永艳. 酸性水化学溶液侵蚀下不同矿物成分含量灰岩溶解特性及力学特性研究. 岩土工程学报. 2021(08): 1550-1557 . 本站查看

    Other cited types(22)

Catalog

    Article views (233) PDF downloads (34) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return