• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

联络通道施工盾构机始发对已建盾构隧道影响试验研究

黄大维, 陈后宏, 徐长节, 罗文俊, 耿大新, 刘家璇

黄大维, 陈后宏, 徐长节, 罗文俊, 耿大新, 刘家璇. 联络通道施工盾构机始发对已建盾构隧道影响试验研究[J]. 岩土工程学报, 2025, 47(5): 987-994. DOI: 10.11779/CJGE20231266
引用本文: 黄大维, 陈后宏, 徐长节, 罗文俊, 耿大新, 刘家璇. 联络通道施工盾构机始发对已建盾构隧道影响试验研究[J]. 岩土工程学报, 2025, 47(5): 987-994. DOI: 10.11779/CJGE20231266
HUANG Dawei, CHEN Houhong, XU Changjie, LUO Wenjun, GENG Daxin, LIU Jiaxuan. Impact of starting of tunnel boring machine during construction of connecting channel on existing shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 987-994. DOI: 10.11779/CJGE20231266
Citation: HUANG Dawei, CHEN Houhong, XU Changjie, LUO Wenjun, GENG Daxin, LIU Jiaxuan. Impact of starting of tunnel boring machine during construction of connecting channel on existing shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 987-994. DOI: 10.11779/CJGE20231266

联络通道施工盾构机始发对已建盾构隧道影响试验研究  English Version

基金项目: 

国家自然科学基金项目 52078213

国家自然科学基金项目 52378398

江西省主要学科学术和技术带头人领军人才项目 20232BCJ22009

江西省自然科学基金资助项目 20242BAB26077

详细信息
    作者简介:

    黄大维(1984—),男,博士,教授,主要从事地下铁道与岩土工程相关的研究与教学工作。E-mail: gddthdw@126.com

    通讯作者:

    徐长节, E-mail: xucj@zju.edu.cn

  • 中图分类号: TU45

Impact of starting of tunnel boring machine during construction of connecting channel on existing shield tunnels

  • 摘要: 盾构法联络通道施工过程中盾构机始发对已建盾构隧道受荷变形影响暂不明确问题,通过设计1︰10的缩尺模型试验,开展了盾构机始发对已建盾构隧道影响试验研究。试验结果表明:盾构法联络通道施工时,在盾构机顶推反力作用下,始发端已建盾构隧道在联络通道位置约1倍隧道直径范围内发生了横椭圆变形,而两端则发生了竖椭圆变形;盾构隧道发生横断面变形时,水平直径变形约为竖向直径变形的3~4倍;在联络通道位置约1倍隧道直径范围内向顶推反力方向发生了水平挠曲变形,而在其两侧方向上发生了水平挠曲反弯现象;竖向挠曲变形趋势与水平挠曲变形相同,且比水平挠曲变形的幅度小;联络通道位置约1倍隧道直径范围内的水平直径增大导致隧道两侧的水平土压力均增大,竖向直径减小导致隧道顶部与底部的竖向土压力均减小;盾构隧道周围的土压力变化是盾构隧道横断面变形与纵向挠曲变形共同作用的结果,在盾构隧道受力分析过程中建议同时考虑其横断面变形与纵向挠曲变形。
    Abstract: The impact of starting of tunnel boring machine (TBM) on the deformation of the existing shield tunnels under loads during the construction process of connecting passage by the shield tunneling method is currently unclear. By designing a 1:10 scaled model experiment, the experimental researches on the impact of starting of the TBM on the existing shield tunnels are conducted. The results indicate that, during the construction of connecting passage by the shield tunneling method, under the action of the top pushing reaction force of the TBM, the existing shield tunnels at the starting end undergo horizontal elliptical deformation within a range of about 1 tunnel diameter at the position of connecting passage, while the vertical one occurs at both ends. When a shield tunnel undergoes cross-sectional deformation, the deformation of horizontal diameter is about 3~4 times that of the vertical one. The horizontal bending deformation occurs in the direction of upward pushing reaction force within a range of approximately 1 tunnel diameter at the location of the connecting passage, and the horizontal bending phenomenon occurs on its both sides. The trend of the vertical deflection deformation is the same as that of the horizontal one, and its amplitude is smaller than that of the horizontal deflection deformation. The increase in the horizontal diameter within the range of about 1 times the tunnel diameter at the location of the connecting passage leads to an increase in the horizontal soil pressures at both sides of the tunnel, while the decrease in the vertical diameter leads to a decrease in the vertical soil pressures at both the top and bottom of the tunnel. The variation of soil pressures around the shield tunnel are the result of the combined action of cross-sectional deformation and longitudinal deflection deformation of the shield tunnel. It is recommended to consider both the cross-sectional deformation and the longitudinal deflection deformation in the stress analysis process of the shield tunnel.
  • 图  1   模型管片环

    Figure  1.   Model segment rings

    图  2   模型隧道拼装

    Figure  2.   Assembling of model tunnel

    图  3   联络通道施工始发模拟装置

    Figure  3.   Simulation devices for starting of TBM during construction of connecting channel

    图  4   隧道两侧土压力盒

    Figure  4.   Earth pressure cells at both sides of tunnel

    图  5   模型试验测试元件布设示意图

    Figure  5.   Layout of elements for model tests

    图  6   隧道变形与挠曲量测装置

    Figure  6.   Measuring devices for tunnel deformation and deflection

    图  7   隧道横断面上所发生的变形

    Figure  7.   Deformations of cross-section of tunnel

    图  8   隧道纵向弯曲变形

    Figure  8.   Longitudinal bending deformation of tunnel

    图  9   隧道四周受到的土压力变化

    Figure  9.   Change in soil pressure around tunnel

  • [1] 朱合华. 地下建筑结构[M]. 2版. 北京: 中国建筑工业出版社, 2011.

    ZHU Hehua. Underground Building Structure[M]. 2nd ed. Beijing: China Architecture & Building Press, 2011. (in Chinese)

    [2] 周顺华, 毛坚强, 王炳龙, 等. 城市轨道交通地下工程计算与分析[M]. 北京: 人民交通出版社, 2014.

    ZHOU Shunhua, MAO Jianqiang, WANG Binglong, et al. Computational and Analytical Methods in Urban Rail Transit Underground Engineering[M]. Beijing: China Communications Press, 2014. (in Chinese)

    [3]

    LI Z L, SOGA K, WRIGHT P. Long-term performance of cast-iron tunnel cross passage in London clay[J]. Tunnelling and Underground Space Technology, 2015, 50: 152-170. doi: 10.1016/j.tust.2015.07.005

    [4]

    SAINI R G, UNIYAL I. Construction of a cross-passage for a twin tunnel system for Delhi Metro's CC-27 Project[J]. TAI Journal, 2017, 6(1): 15-20.

    [5] 朱瑶宏, 王靖禹, 董子博, 等. 盾构法联络通道密封垫设计及防水试验研究[J]. 隧道建设(中英文), 2019, 39(1): 110-118.

    ZHU Yaohong, WANG Jingyu, DONG Zibo, et al. Design of sealing gasket of connection gallery bored by shield and its waterproofing test[J]. Tunnel Construction, 2019, 39(1): 110-118. (in Chinese)

    [6] 刘军, 贺美德, 宋旱云. 联络通道施工盾构管片力学行为研究[J]. 岩土工程学报, 2013, 35(增刊2): 271-275. http://cge.nhri.cn/article/id/15393

    LIU Jun, HE Mei-de, SONG Han-yun. Mechanical behaviors of shield tunnel segments due to construction of connecting passages [J]. Journal of Geotechnical Engineering, 2013, 35(S2): 271-275. (in Chinese) http://cge.nhri.cn/article/id/15393

    [7]

    ATZL G, SORANZO E, MIHAYLOV V, et al. Special segments at the cross passages in the Filder Tunnel- Interpretation of the data from monitoring segments[J]. Geomechanics and Tunnelling, 2017, 10(2): 160-176. doi: 10.1002/geot.201600075

    [8] 段俊萌. 盾构隧道联络通道施工管片力学响应研究[D]. 北京: 北京交通大学, 2019.

    DUAN Junmeng. Study on Mechanical Response of Segment in Construction of connecting Passage of shield Tunnel[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)

    [9]

    SPYRIDIS P, BERGMEISTER K. Analysis of lateral openings in tunnel linings[J]. Tunnelling and Underground Space Technology, 2015, 50: 376-395. doi: 10.1016/j.tust.2015.08.005

    [10]

    HAN L, YE G L, LI Y H, et al. In situ monitoring of frost heave pressure during cross passage construction using ground-freezing method[J]. Canadian Geotechnical Journal, 2016, 53(3): 530-539. doi: 10.1139/cgj-2014-0486

    [11] 胡心舟. 不均匀变形对联络通道喇叭口应力的数值分析[J]. 四川建材, 2020, 46(2): 92-93, 96. doi: 10.3969/j.issn.1672-4011.2020.02.046

    HU Xinzhou. Numerical analysis on the stress of the cross passage bell-mouth by uneven deformation[J]. Sichuan Building Materials, 2020, 46(2): 92-93, 96. (in Chinese) doi: 10.3969/j.issn.1672-4011.2020.02.046

    [12] 张崇, 牛帅, 姜鹏, 等. 联络通道施工对隧道T接结构的受力影响研究[J]. 现代城市轨道交通, 2023(5): 64-70.

    ZHANG Chong, NIU Shuai, JIANG Peng, et al. Study on the influence of connecting passage construction on the stress of T-junction structure[J]. Modern Urban Transit, 2023(5): 64-70. (in Chinese)

    [13]

    SHEN K J, WAN S, ZHANG X C. Effect of cross passage construction on the structural safety of collapse reinforcement segment of existing tunnel[J]. Advanced Materials Research, 2013, 779/780: 538-543. doi: 10.4028/www.scientific.net/AMR.779-780.538

    [14]

    LI Z L, SOGA K, WRIGHT P. Three-dimensional finite element analysis of the behaviour of cross passage between cast-iron tunnels[J]. Canadian Geotechnical Journal, 2016, 53(6): 930-945. doi: 10.1139/cgj-2015-0273

    [15]

    STRAUSS A, PAPAKONSTANINOU S. Cross passages in soil-ground freezing, segment application, excavation and displacement monitoring for segmental lining[J]. Geomechanics and Tunnelling, 2013, 6(5): 494-499. doi: 10.1002/geot.201300021

    [16] 陈冠任, 李栋伟, 陈军浩, 等. 富水地层地铁超长联络通道冻结位移场演化规律研究[J]. 铁道科学与工程学报, 2023, 20(8): 3000-3013.

    CHEN Guanren, LI Dongwei, CHEN Junhao, et al. Evolution law of freezing displacement field in ultra-long connected aisle in water-rich stratum[J]. Journal of Railway Science and Engineering, 2023, 20(8): 3000-3013. (in Chinese)

    [17] 夏才初, 方杭楠, 赵昊楠, 等. 富水软土地层联络通道冻结温度场分布规律[J]. 地下空间与工程学报, 2023, 19(4): 1339-1350.

    XIA Caichu, FANG Hangnan, ZHAO Haonan, et al. Distribution law of freezing temperature field in connecting channel of water rich soft soil layer[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(4): 1339-1350. (in Chinese)

    [18] 邓建林, 何寨兵, 李海波, 等. 盾构法联络通道T接部位受力特性测试研究[J]. 宁波大学学报(理工版), 2022, 35(6): 22-27.

    DENG Jianlin, HE Zhaibing, LI Haibo, et al. Field measurement on the mechanical characteristics of the T-type intersection during the construction of shield-driven cross passage[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2022, 35(6): 22-27. (in Chinese)

    [19] 王儒, 翟五洲, 倪海波, 等. 盾构隧道机械法联络通道破洞施工中管片衬砌洞门结构力学响应的数值模拟研究[J]. 隧道建设(中英文), 2023, 43(增刊1): 178-188.

    WANG Ru, ZHAI Wuzhou, NI Haibo, et al. Numerical simulation on mechanical response of tunnel portal with segment lining in mechanized construction of cross passage of shield tunnel[J]. Tunnel Construction, 2023, 43(S1): 178-188. (in Chinese)

    [20] 张付林, 刘正好, 朱瑶宏, 等. 机械法联络通道T接部位受力特性及弱化分析[J]. 岩土工程学报, 2022, 44(增刊2): 116-119. doi: 10.11779/CJGE2022S2025

    ZHANG Fulin, LIU Zhenghao, ZHU Yaohong, et al. Stress characteristics and weakening analysis of T-joint of connection passage by mechanical excavation method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 116-119. (in Chinese) doi: 10.11779/CJGE2022S2025

    [21] 朱瑶宏, 高一民, 董子博, 等. 盾构法T接隧道结构受力足尺试验研究[J]. 隧道建设(中英文), 2020, 40(1): 9-18.

    ZHU Yaohong, GAO Yimin, DONG Zibo, et al. Full-scale experi mental study on structural mechanism of T-connected tunnel constructed by shield method[J]. Tunnel Construction, 2020, 40(1): 9-18. (in Chinese)

    [22] 朱瑶宏, 高一民, 董子博, 等. 顶管法T接隧道结构受力足尺试验研究[J]. 隧道建设(中英文), 2019, 39(9): 1392-1401.

    ZHU Yaohong, GAO Yimin, DONG Zibo, et al. Full-scale experimental study on structural mechanism of T-connected tunnel constructed by pipe jacking method[J]. Tunnel Construction, 2019, 39(9): 1392-1401. (in Chinese)

    [23] 朱瑶宏, 高一民, 董子博, 等. 盾构法T接隧道结构受力现场试验研究: 以宁波轨道交通3号线联络通道为例[J]. 隧道建设(中英文), 2019, 39(11): 1759-1768.

    ZHU Yaohong, GAO Yimin, DONG Zibo, et al. Field test on structural mechanism of T-connected shield tunnel: a case study of connecting passage on Ningbo metro line No. 3[J]. Tunnel Construction, 2019, 39(11): 1759-1768. (in Chinese)

    [24] 丁剑敏, 董子博, 莫振泽, 等. 顶管法T接隧道现场试验研究分析[J]. 隧道建设(中英文), 2020, 40(1): 28-34.

    DING Jianmin, DONG Zibo, MO Zhenze, et al. Field experimental study on T-connected tunnel with pipe jacking method[J]. Tunnel Construction, 2020, 40(1): 28-34. (in Chinese)

    [25] 黄大维, 徐长节, 罗文俊, 等. 考虑横向与纵向刚度相似的模型盾构隧道设计方法[J]. 岩土工程学报, 2023, 45(11): 2299-2307.

    HUANG Dawei, XU Changjie, LUO Wenjun, et al. Design method for shield tunnel model considering similarities of transverse and longitudinal rigidities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2299-2307. (in Chinese)

    [26] 黄大维, 陈后宏, 徐长节, 等. 联络通道施工盾构机接收对已建盾构隧道影响试验研究[J]. 岩土工程学报, 2024, 46(4): 784-793.

    HUANG Dawei, CHEN Houhong, XU Changjie, et al. Experimental study on the influence of shield machine reception on the existing shield tunnel in connecting channel construction[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 784-793. (in Chinese)

图(9)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-24
  • 网络出版日期:  2024-07-23
  • 刊出日期:  2025-04-30

目录

    /

    返回文章
    返回