• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Dawei, CHEN Houhong, XU Changjie, LUO Wenjun, GENG Daxin, LIU Jiaxuan. Impact of starting of tunnel boring machine during construction of connecting channel on existing shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 987-994. DOI: 10.11779/CJGE20231266
Citation: HUANG Dawei, CHEN Houhong, XU Changjie, LUO Wenjun, GENG Daxin, LIU Jiaxuan. Impact of starting of tunnel boring machine during construction of connecting channel on existing shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 987-994. DOI: 10.11779/CJGE20231266

Impact of starting of tunnel boring machine during construction of connecting channel on existing shield tunnels

More Information
  • Received Date: December 24, 2023
  • Available Online: July 23, 2024
  • The impact of starting of tunnel boring machine (TBM) on the deformation of the existing shield tunnels under loads during the construction process of connecting passage by the shield tunneling method is currently unclear. By designing a 1:10 scaled model experiment, the experimental researches on the impact of starting of the TBM on the existing shield tunnels are conducted. The results indicate that, during the construction of connecting passage by the shield tunneling method, under the action of the top pushing reaction force of the TBM, the existing shield tunnels at the starting end undergo horizontal elliptical deformation within a range of about 1 tunnel diameter at the position of connecting passage, while the vertical one occurs at both ends. When a shield tunnel undergoes cross-sectional deformation, the deformation of horizontal diameter is about 3~4 times that of the vertical one. The horizontal bending deformation occurs in the direction of upward pushing reaction force within a range of approximately 1 tunnel diameter at the location of the connecting passage, and the horizontal bending phenomenon occurs on its both sides. The trend of the vertical deflection deformation is the same as that of the horizontal one, and its amplitude is smaller than that of the horizontal deflection deformation. The increase in the horizontal diameter within the range of about 1 times the tunnel diameter at the location of the connecting passage leads to an increase in the horizontal soil pressures at both sides of the tunnel, while the decrease in the vertical diameter leads to a decrease in the vertical soil pressures at both the top and bottom of the tunnel. The variation of soil pressures around the shield tunnel are the result of the combined action of cross-sectional deformation and longitudinal deflection deformation of the shield tunnel. It is recommended to consider both the cross-sectional deformation and the longitudinal deflection deformation in the stress analysis process of the shield tunnel.
  • [1]
    朱合华. 地下建筑结构[M]. 2版. 北京: 中国建筑工业出版社, 2011.

    ZHU Hehua. Underground Building Structure[M]. 2nd ed. Beijing: China Architecture & Building Press, 2011. (in Chinese)
    [2]
    周顺华, 毛坚强, 王炳龙, 等. 城市轨道交通地下工程计算与分析[M]. 北京: 人民交通出版社, 2014.

    ZHOU Shunhua, MAO Jianqiang, WANG Binglong, et al. Computational and Analytical Methods in Urban Rail Transit Underground Engineering[M]. Beijing: China Communications Press, 2014. (in Chinese)
    [3]
    LI Z L, SOGA K, WRIGHT P. Long-term performance of cast-iron tunnel cross passage in London clay[J]. Tunnelling and Underground Space Technology, 2015, 50: 152-170. doi: 10.1016/j.tust.2015.07.005
    [4]
    SAINI R G, UNIYAL I. Construction of a cross-passage for a twin tunnel system for Delhi Metro's CC-27 Project[J]. TAI Journal, 2017, 6(1): 15-20.
    [5]
    朱瑶宏, 王靖禹, 董子博, 等. 盾构法联络通道密封垫设计及防水试验研究[J]. 隧道建设(中英文), 2019, 39(1): 110-118.

    ZHU Yaohong, WANG Jingyu, DONG Zibo, et al. Design of sealing gasket of connection gallery bored by shield and its waterproofing test[J]. Tunnel Construction, 2019, 39(1): 110-118. (in Chinese)
    [6]
    刘军, 贺美德, 宋旱云. 联络通道施工盾构管片力学行为研究[J]. 岩土工程学报, 2013, 35(增刊2): 271-275. http://cge.nhri.cn/article/id/15393

    LIU Jun, HE Mei-de, SONG Han-yun. Mechanical behaviors of shield tunnel segments due to construction of connecting passages [J]. Journal of Geotechnical Engineering, 2013, 35(S2): 271-275. (in Chinese) http://cge.nhri.cn/article/id/15393
    [7]
    ATZL G, SORANZO E, MIHAYLOV V, et al. Special segments at the cross passages in the Filder Tunnel- Interpretation of the data from monitoring segments[J]. Geomechanics and Tunnelling, 2017, 10(2): 160-176. doi: 10.1002/geot.201600075
    [8]
    段俊萌. 盾构隧道联络通道施工管片力学响应研究[D]. 北京: 北京交通大学, 2019.

    DUAN Junmeng. Study on Mechanical Response of Segment in Construction of connecting Passage of shield Tunnel[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [9]
    SPYRIDIS P, BERGMEISTER K. Analysis of lateral openings in tunnel linings[J]. Tunnelling and Underground Space Technology, 2015, 50: 376-395. doi: 10.1016/j.tust.2015.08.005
    [10]
    HAN L, YE G L, LI Y H, et al. In situ monitoring of frost heave pressure during cross passage construction using ground-freezing method[J]. Canadian Geotechnical Journal, 2016, 53(3): 530-539. doi: 10.1139/cgj-2014-0486
    [11]
    胡心舟. 不均匀变形对联络通道喇叭口应力的数值分析[J]. 四川建材, 2020, 46(2): 92-93, 96. doi: 10.3969/j.issn.1672-4011.2020.02.046

    HU Xinzhou. Numerical analysis on the stress of the cross passage bell-mouth by uneven deformation[J]. Sichuan Building Materials, 2020, 46(2): 92-93, 96. (in Chinese) doi: 10.3969/j.issn.1672-4011.2020.02.046
    [12]
    张崇, 牛帅, 姜鹏, 等. 联络通道施工对隧道T接结构的受力影响研究[J]. 现代城市轨道交通, 2023(5): 64-70.

    ZHANG Chong, NIU Shuai, JIANG Peng, et al. Study on the influence of connecting passage construction on the stress of T-junction structure[J]. Modern Urban Transit, 2023(5): 64-70. (in Chinese)
    [13]
    SHEN K J, WAN S, ZHANG X C. Effect of cross passage construction on the structural safety of collapse reinforcement segment of existing tunnel[J]. Advanced Materials Research, 2013, 779/780: 538-543. doi: 10.4028/www.scientific.net/AMR.779-780.538
    [14]
    LI Z L, SOGA K, WRIGHT P. Three-dimensional finite element analysis of the behaviour of cross passage between cast-iron tunnels[J]. Canadian Geotechnical Journal, 2016, 53(6): 930-945. doi: 10.1139/cgj-2015-0273
    [15]
    STRAUSS A, PAPAKONSTANINOU S. Cross passages in soil-ground freezing, segment application, excavation and displacement monitoring for segmental lining[J]. Geomechanics and Tunnelling, 2013, 6(5): 494-499. doi: 10.1002/geot.201300021
    [16]
    陈冠任, 李栋伟, 陈军浩, 等. 富水地层地铁超长联络通道冻结位移场演化规律研究[J]. 铁道科学与工程学报, 2023, 20(8): 3000-3013.

    CHEN Guanren, LI Dongwei, CHEN Junhao, et al. Evolution law of freezing displacement field in ultra-long connected aisle in water-rich stratum[J]. Journal of Railway Science and Engineering, 2023, 20(8): 3000-3013. (in Chinese)
    [17]
    夏才初, 方杭楠, 赵昊楠, 等. 富水软土地层联络通道冻结温度场分布规律[J]. 地下空间与工程学报, 2023, 19(4): 1339-1350.

    XIA Caichu, FANG Hangnan, ZHAO Haonan, et al. Distribution law of freezing temperature field in connecting channel of water rich soft soil layer[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(4): 1339-1350. (in Chinese)
    [18]
    邓建林, 何寨兵, 李海波, 等. 盾构法联络通道T接部位受力特性测试研究[J]. 宁波大学学报(理工版), 2022, 35(6): 22-27.

    DENG Jianlin, HE Zhaibing, LI Haibo, et al. Field measurement on the mechanical characteristics of the T-type intersection during the construction of shield-driven cross passage[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2022, 35(6): 22-27. (in Chinese)
    [19]
    王儒, 翟五洲, 倪海波, 等. 盾构隧道机械法联络通道破洞施工中管片衬砌洞门结构力学响应的数值模拟研究[J]. 隧道建设(中英文), 2023, 43(增刊1): 178-188.

    WANG Ru, ZHAI Wuzhou, NI Haibo, et al. Numerical simulation on mechanical response of tunnel portal with segment lining in mechanized construction of cross passage of shield tunnel[J]. Tunnel Construction, 2023, 43(S1): 178-188. (in Chinese)
    [20]
    张付林, 刘正好, 朱瑶宏, 等. 机械法联络通道T接部位受力特性及弱化分析[J]. 岩土工程学报, 2022, 44(增刊2): 116-119. doi: 10.11779/CJGE2022S2025

    ZHANG Fulin, LIU Zhenghao, ZHU Yaohong, et al. Stress characteristics and weakening analysis of T-joint of connection passage by mechanical excavation method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 116-119. (in Chinese) doi: 10.11779/CJGE2022S2025
    [21]
    朱瑶宏, 高一民, 董子博, 等. 盾构法T接隧道结构受力足尺试验研究[J]. 隧道建设(中英文), 2020, 40(1): 9-18.

    ZHU Yaohong, GAO Yimin, DONG Zibo, et al. Full-scale experi mental study on structural mechanism of T-connected tunnel constructed by shield method[J]. Tunnel Construction, 2020, 40(1): 9-18. (in Chinese)
    [22]
    朱瑶宏, 高一民, 董子博, 等. 顶管法T接隧道结构受力足尺试验研究[J]. 隧道建设(中英文), 2019, 39(9): 1392-1401.

    ZHU Yaohong, GAO Yimin, DONG Zibo, et al. Full-scale experimental study on structural mechanism of T-connected tunnel constructed by pipe jacking method[J]. Tunnel Construction, 2019, 39(9): 1392-1401. (in Chinese)
    [23]
    朱瑶宏, 高一民, 董子博, 等. 盾构法T接隧道结构受力现场试验研究: 以宁波轨道交通3号线联络通道为例[J]. 隧道建设(中英文), 2019, 39(11): 1759-1768.

    ZHU Yaohong, GAO Yimin, DONG Zibo, et al. Field test on structural mechanism of T-connected shield tunnel: a case study of connecting passage on Ningbo metro line No. 3[J]. Tunnel Construction, 2019, 39(11): 1759-1768. (in Chinese)
    [24]
    丁剑敏, 董子博, 莫振泽, 等. 顶管法T接隧道现场试验研究分析[J]. 隧道建设(中英文), 2020, 40(1): 28-34.

    DING Jianmin, DONG Zibo, MO Zhenze, et al. Field experimental study on T-connected tunnel with pipe jacking method[J]. Tunnel Construction, 2020, 40(1): 28-34. (in Chinese)
    [25]
    黄大维, 徐长节, 罗文俊, 等. 考虑横向与纵向刚度相似的模型盾构隧道设计方法[J]. 岩土工程学报, 2023, 45(11): 2299-2307.

    HUANG Dawei, XU Changjie, LUO Wenjun, et al. Design method for shield tunnel model considering similarities of transverse and longitudinal rigidities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2299-2307. (in Chinese)
    [26]
    黄大维, 陈后宏, 徐长节, 等. 联络通道施工盾构机接收对已建盾构隧道影响试验研究[J]. 岩土工程学报, 2024, 46(4): 784-793.

    HUANG Dawei, CHEN Houhong, XU Changjie, et al. Experimental study on the influence of shield machine reception on the existing shield tunnel in connecting channel construction[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 784-793. (in Chinese)
  • Related Articles

    [1]YANG Xin-xin, XI Bao-ping, HE Shui-xin, DONG Yun-sheng, XIN Guo-xu. Fracture characteristics and pore connectivity of sandstone under thermal shock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1925-1934. DOI: 10.11779/CJGE202210019
    [2]WU Huan-ran, LIU Han-long, ZHAO Ji-dong, XIAO Yang. Multiscale analyses of failure pattern transition in high-porosity sandstones[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2222-2229. DOI: 10.11779/CJGE202012008
    [3]LI Zhen, ZHANG Jing-ke, LIU Dun, ZHANG Ke, LIU Jian-hui, LI Li, LIANG Xing-zhou. Experimental study on indoor simulated deterioration of sandstone of Xiaofowan statues at Dazu Rock Carvings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1513-1521. DOI: 10.11779/CJGE201908016
    [4]KONG Qian, WANG Huan-ling, XU Wei-ya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. DOI: 10.11779/CJGE201510018
    [5]ZOU Hang, LIU Jian-feng, BIAN Yu, ZHOU Zhi-wei, ZHUO Yue. Experimental study on mechanical and permeability properties of sandstone with different granularities[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1462-1468. DOI: 10.11779/CJGE201508015
    [6]SUN Qiang, LIU Sheng-dong, JIANG Chun-lu, WANG Bo. Electric response tests on unsaturated layer thickness in course of seepage of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1350-1354.
    [7]LIU Dong-yan, ZHAO Bao-yun, ZHU Ke-shan, XUE Kai-xi. Direct tension creep behaviors of sandstone and improvement and application of Burgers model[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1740-1744.
    [8]Weathering rates of sandstone in lower walls of Ancient City of Pingyao[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [9]WU Yanqing, CAO Guangzhu, DING Weihua. Permeability experiment of sandstone under variable seepage pressures by using X-ray CT real-time observation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 780-785.
    [10]MENG Zhaoping, PENG Suping, ZHANG Shenhe. Triaxial test on physical and mechanical properties of sandstone for different diagenesis degree[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 140-143.
  • Cited by

    Periodical cited type(7)

    1. 罗强,程田,薛元,刘宏扬,张东卿. 路堤下CFG桩复合地基稳定性分析方法及试验验证. 铁道学报. 2024(11): 145-154 .
    2. 周岳,柯辉,庞正伟,汪旭,祝必仁,王虎. 基坑开挖对超深软土复合地基桩体的影响研究. 广州建筑. 2023(06): 1-4 .
    3. 罗强,马宏飞,王腾飞,张良,蒋良潍. 路堤下混凝土桩复合地基抗桩体弯折破坏地梁效应. 中南大学学报(自然科学版). 2022(08): 3144-3155 .
    4. 郑刚,赵佳鹏,周海祚,于晓旋,夏博洋,王金山. 国内外高速公路、铁路地基处理技术回顾. 地基处理. 2021(02): 91-99 .
    5. 张经双,段雪雷,吴倩云,刘永翔,夏香港. 氯盐-干湿循环耦合作用下水泥土的力学性能. 建筑材料学报. 2021(03): 508-515+550 .
    6. 刘仕东. 上合组织(连云港)国际物流园专用铁路搅拌桩水泥掺量研究. 铁道勘察. 2020(02): 47-52 .
    7. 郑刚,周海祚. 复合地基极限承载力与稳定研究进展. 天津大学学报(自然科学与工程技术版). 2020(07): 661-673 .

    Other cited types(12)

Catalog

    Article views (161) PDF downloads (32) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return