Consolidation states of silty soils in tidal flats of Yellow River estuary by in-situ testing
-
摘要: 黄河口泥沙快速堆积在河口一带,在波浪和潮波作用下,表层沉积物处于超固结状态,但试验中发现采用Casagrande作图法求取的黄河口粉质土先期固结压力往往偏大。为了了解黄河口粉质土固结状态、合理估算先期固结压力,在黄河口刁口流路三角洲叶瓣潮坪上,现场取土在试坑内配置了模拟黄河口快速沉积形成的流体状堆积物,利用原位测试手段(静力触探、十字板剪切试验和孔隙水压力测试),并在长期观测基础上,对比研究了1.0 m深度范围内试坑和潮滩原状土体固结过程及固结状态。研究发现:黄河口快速沉积粉质土在自重作用下固结很快,固结完成后,土体强度随时间发展呈现不均匀增长,沿深度方向从上到下出现高-低-次高不均匀固结特征;历经16个月后,试坑和潮滩原状土体先期固结压力进一步提高,固结不均匀性和结构性不断增强。从试坑土体自重固结完成后的实际固结状态及原状土体物理性质指标来看,Casagrande作图法结果偏大,采用静力触探比贯入阻力法、十字板剪切试验不排水抗剪强度经验公式法估算的试坑和潮滩原状土体先期固结压力数值更为可靠;同时该方法为土体固结状态研究提供了新途径。Abstract: The sediments in the Yellow River estuary rapidly deposit in the estuarine area. Under the action of waves and tidal waves, the surface sediments are in an over-consolidated state. However, it is found that the pre-consolidation pressure of silty soils in the Yellow River estuary calculated by the Casagrande graphic method is usually too high. In order to find out the consolidation states and estimate the pre-consolidation pressure of silty soils reasonably, a series of tests are conducted on the tide flat of Diaokou delta lobe. The fluid sediments imitating the rapidly deposited seabed silts are made in situ, and then promptly filled into a one-meter deep pit excavated at the tide flat. Through the in-situ testing methods such as the static cone penetration tests, field vane shear tests and pore water pressure tests, on the basis of long-term observation, the consolidation processes and states of the undisturbed soils of the tidal flat and testing pit soils are studied in the range of 1.0 m in depth. It is shown that the consolidation speed of the rapidly deposited pit silty soils are very fast under the effective gravity stress, after consolidation compression is completed, the strength of such soils still increase unevenly with the development of time, exhibiting high-low-subhigh non-uniform consolidation characteristics along the depth. After 16 months, the pre-consolidation pressures of the undisturbed soils and testing pit soils further increase, the characteristics of non-uniform consolidation and structure are enhanced continuously. According to the actual consolidation states of the testing pit soils after the self-weight compression consolidation is completed and the indexes of physical and mechanical properties of the undisturbed soils, the results of the Casagrande graphic method are too great, so it is more reliable to estimate the pre-consolidation pressures of the undisturbed soils and testing pit soils by using the static cone penetration tests and field vane shear tests. Meantime such in-situ testing methods provide a new way to determine the consolidation states of soils.
-
-
表 1 原状土样与试坑土样物理力学性质指标表
Table 1 Mechanical properties of testing pit soils and undisturbed soils
试样 深度/m w/
%ρ/
(g·cm-3)e Sr Ip IL α1-2/
MPa-1Es1-2/
MPapcq/
kPaOCR 原状样 0.0~0.3 24.8 1.94 0.737 90 7.7 0.59 0.147 11.88 163.2 115.7 0.3~0.6 25.3 1.96 0.732 93 8.0 0.33 0.236 7.62 135.4 31.8 0.6~1.0 26.8 1.95 0.762 96 7.7 0.26 0.171 10.29 175.8 23.1 试坑样 0.0~0.3 26.4 1.92 0.784 92 8.0 0.91 0.206 8.68 75.8 54.9 0.3~0.6 28.0 1.91 0.806 94 7.5 0.88 0.251 7.19 51.9 12.6 0.6~1.0 29.1 1.92 0.793 98 7.8 0.59 0.218 8.24 65.5 8.9 表 2 用十字板不排水抗剪强度法估算试坑和原状土体先期固结压力和超固结比
Table 2 Estimated pre-consolidation pressures and overconsolidation ratios of tesing pit soils and undisturbed soils with Cu by FVST
深度/
cm试坑土体 原状土体 4月15日 16个月后 4月15日 16个月后 pc/kPa OCR pc/kPa OCR pc/kPa OCR pc/kPa OCR 30 6.76 2.39 16.52 5.92 16.89 6.05 37.14 13.31 60 6.90 1.24 19.78 3.54 32.24 5.78 60.59 10.86 90 11.29 1.35 28.65 3.42 34.58 4.13 53.15 6.35 表 3 用十字板不排水抗剪强度法估算重塑试坑和原状土体固结压力和超固结比
Table 3 Estimated consolidation pressures and overconsolidation ratios of remoded soils with Cu by FVST
深度/
cm试坑土体 原状土体 4月15日 16个月后 4月15日 16个月后 pcr/kPa OCR pcr/kPa OCR pcr/kPa OCR pcr/kPa OCR 30 5.54 1.98 6.53 2.34 4.66 1.67 6.21 2.22 60 5.61 1.00 5.77 1.03 7.85 1.46 11.93 2.14 90 10.26 1.22 11.33 1.35 9.14 1.09 10.72 1.28 表 4 用十字板不排水抗剪强度法估算试坑和原状土体结构强度
Table 4 Estimated structural strengths of testing pit soils and undisturbed soils with Cu by FVST
深度/
cm试坑土体 原状土体 4月15日 16个月后 4月15日 16个月后 ps/kPa pc/pcr ps/kPa pc/pcr ps/kPa pc/pcr ps/kPa pc/pcr 30 1.22 1.22 9.99 2.53 12.23 3.62 30.93 5.98 60 1.29 1.23 14.01 3.42 24.42 4.11 48.66 5.08 90 1.03 1.10 17.32 2.53 25.44 3.78 42.43 4.96 表 5 用静力触探比贯入阻力法估算试坑和原状土体固结状态
Table 5 Estimated consolidation states of testing pit soils and undisturbed soils with Ps by SPT
深度/
cm试坑土体 原状土体 4月15日 16个月后 4月15日 16个月后 pc/kPa OCR pc/kPa OCR pc/kPa OCR pc/kPa OCR 10 3.78 4.06 22.95 24.68 35.55 38.23 47.26 50.82 20 5.92 3.18 19.51 10.49 28.89 15.53 43.20 23.23 30 4.79 1.72 20.53 7.36 33.73 12.09 25.44 9.12 40 4.85 1.30 11.84 3.18 12.52 3.37 10.66 2.87 50 6.20 1.33 10.15 2.18 6.87 1.48 8.40 1.81 60 6.65 1.19 15.79 2.83 9.90 1.77 13.20 2.37 70 7.84 1.20 17.09 2.62 16.16 2.48 21.09 3.24 80 9.81 1.32 21.26 2.86 21.82 2.93 24.93 3.35 90 27.63 3.30 22.62 2.70 36.88 4.41 -
[1] 钱家欢, 殷宗泽. 土工原理与计算[M]. 2版. 北京: 中国水利水电出版社, 1996. QIAN Jiahuan, YIN Zongze. Geotechnical Principle and Calculation[M]. 2nd ed. Beijing: China Water & Power Press, 1996. (in Chinese)
[2] BUTTERFIELD R. A natural compression law for soils[J]. Géotechnique, 1979, 29(4): 469-480. doi: 10.1680/geot.1979.29.4.469
[3] 姜安龙, 赵春风, 高大钊. 确定先期固结压力的数学模型法[J]. 岩土力学, 2003, 24(2): 292-295. doi: 10.3969/j.issn.1000-7598.2003.02.031 JIANG Anlong, ZHAO Chunfeng, GAO Dazhao. Mathematical model method of determining preconsolidation pressure[J]. Rock and Soil Mechanics, 2003, 24(2): 292-295. (in Chinese) doi: 10.3969/j.issn.1000-7598.2003.02.031
[4] 邹越强, 王建斌, 邵孟新. 推求先期固结压力的逐步逼近法[J]. 岩土力学, 1994, 16(3): 548-561. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC403.005.htm ZOU Yueqiang, WANG Jianbing, SHAO Mengxin. Ascertaining precon- solidation pressure by iteration[J]. Rock and Soil Mechanics, 1994, 16(3): 548-561. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC403.005.htm
[5] 顾小芸. 海洋土先期固结压力的综合方法[C]//中国土木工程学会第五届全国土力学及基础工程学术会议论文选集, 厦门, 1987. GU Xiaoyun. Synthetically determinate methods of pre-consolidation pressure of marine soils[C]// Proceedings of The Fifth National Conference on Soil Mechanics and Foundation Engineering, China Civil Engineering Society, Xiamen, 1987. (in Chinese)
[6] YAMAMOTO T. Wave-induced pore pressures and effective stresses in inhomogeneous seabed foundations[J]. Ocean Engineering, 1981, 8(1): 1-16. doi: 10.1016/0029-8018(81)90002-0
[7] JENG D S, LEE T L. Dynamic response of porous seabed to ocean waves[J]. Computers and Geotechnics, 2001, 28(2): 99-128. doi: 10.1016/S0266-352X(00)00026-4
[8] 冯秀丽, 沈渭铨, 杨荣民, 等. 现代黄河口区沉积环境与沉积物工程性质的关系[J]. 青岛海洋大学学报, 1994a: 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY4S3.003.htm FENG Xiuli, SHEN Weiquan, YANG Rongmin, et al. Relation between the geotecnial character of seabed sediment and the sedimentary enviroment of the modern Huanghe estuary area[J]. Journal of Ocean University of Qingdao, 1994a: 20-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY4S3.003.htm
[9] 张民生, 刘红军, 李晓东, 等. 波浪作用下黄河口粉土液化与"铁板砂" 形成机制的模拟试验研究[J]. 岩土力学, 2009, 30(11): 3347-3351, 3356. doi: 10.3969/j.issn.1000-7598.2009.11.022 ZHANG Minsheng, LIU Hongjun, LI Xiaodong, et al. Study of liquefaction of silty soil and mechanism of development of hard layer under wave actions at Yellow River Estuary[J]. Rock and Soil Mechanics, 2009, 30(11): 3347-3351, 3356. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.022
[10] 冷浩, 胡瑞庚, 刘红军, 等. 波流作用下黄河三角洲硬壳层液化渗流形成机制研究[J]. 工程地质学报, 2021, 29(6): 1779-1787. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106012.htm LENG Hao, HU Ruigeng, LIU Hongjun, et al. Mechanism of liquefaction seepage of upper seabed layer in the Yellow River Delta under wave-current via numeri-cal simulation[J]. Journal of Engineering Geology, 2021, 29(6): 1779-1787. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106012.htm
[11] 苏思杨, 孔德琼, 吴雷晔, 等. 波浪作用下海床液化-重固结移动边界分析模型及离心模型试验验证[J]. 岩土工程学报, 2022, 44(6): 1156-1165. doi: 10.11779/CJGE202206021 SU Siyang, KONG Deqiong, WU Leiye, et al. Development and validation of a modified moving boundary model to simulate liquefaction- solidification behaviors of seabed under wave loading[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1156-1165. (in Chinese) doi: 10.11779/CJGE202206021
[12] 单红仙, 张建民, 贾永刚, 等. 黄河口快速沉积海床土固结过程研究[J]. 岩石力学与工程学报, 2006, 25(8): 1676-1682. doi: 10.3321/j.issn:1000-6915.2006.08.024 SHAN Hongxian, ZHANG Jianmin, JIA Yonggang, et al. Study on consolidation process of rapidly deposited seabed soils in Yellow River Estuary[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(8): 1676-1682. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.08.024
[13] 杨秀娟, 贾永刚. 黄河口入海泥沙沉积固结过程长期现场观测研究[J]. 岩土工程学报, 2013, 35(4): 671-678. http://cge.nhri.cn/article/id/15019 YANG Xiujuan, JIA Yonggang. Long-term field observation of sediment consolidation process in Yellow River Delta, China[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 671-678. (in Chinese) http://cge.nhri.cn/article/id/15019
[14] 张建民, 单红仙, 贾永刚, 等. 波浪和潮波作用下黄河口快速沉积海床土非均匀固结试验研究[J]. 岩土力学, 2007, 28(7): 1369-1375, 1380. doi: 10.3969/j.issn.1000-7598.2007.07.016 ZHANG Jianmin, SHAN Hongxian, JIA Yonggang, et al. An experimental study of nonuniform consolidation of rapid sediment seabed soils at Yellow River mouth subjected to wave and tide wave loading[J]. Rock and Soil Mechanics, 2007, 28(7): 1369-1375, 1380. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.07.016
[15] 冯秀丽, 周松望, 林霖, 等. 现代黄河三角洲粉土触变性研究及其应用[J]. 中国海洋大学学报(自然科学版), 2004, 34(6): 1053-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200406026.htm FENG Xiuli, ZHOU Songwang, LIN Lin, et al. The thixotropy of silt in Huanghe delta[J]. Periodical of Ocean University of China, 2004, 34(6): 1053-1056. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200406026.htm
[16] PRIOR D B, SUHAYDA J N, et al. Storm wave reactivation of submarine landslide[J]. Nature, 1989(341): 159-164.
[17] FELLENIUS B H. Discussion on soil properties[C]// Proceedings of the 1st ICSMFE, Cambridge: Harvard University, MA, 1936.
[18] SKEMPTON A W. The planning and design of the new Hong Kong airport[C]// Proceedings of the Institution of Civil Engineers, London, 1957: 305-307.
[19] LADD C C, FOOTT R, ISHIHARA K, et al. Stress deformation and strength characteristics[C]// Proceedings of the 9th ICSMFE, Tokyo, 1977: 421-494.
[20] 简文彬, 吴振祥, 童文德, 等. 静力触探判别软土固结历史[J]. 岩石力学与工程学报, 2005, 24(12): 2166-2169. doi: 10.3321/j.issn:1000-6915.2005.12.027 JIAN Wenbin, WU Zhenxiang, TONG Wende, et al. Consolidation state of soft soil differentiated by static cone sounding[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2166-2169. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.12.027
[21] 臧启运. 黄河三角洲近岸泥砂[M]. 北京: 海洋出版社, 1996. ZANG Qiyun. Alongshore Mud and Sand of Yellow River Delta[M]. Beijing: Ocean Press, 1996. (in Chinese)
[22] 龚晓南, 熊传祥, 项可祥, 等. 黏土结构性对其力学性质的影响及形成原因分析[J]. 水利学报, 2000, 31(10): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200010006.htm GONG Xiaonan, XIONG Chuanxiang, XIANG Kexiang, et al. The formation of clay structure and its influence on mechanical characteristics of clay[J]. Journal of Hydraulic Engineering, 2000, 31(10): 43-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200010006.htm
[23] 孟高头. 土体原位测试机理、方法及其工程应用[M]. 北京: 地质出版社, 1997. MENG Gaotou. Mechanism, Method and Engineering Application of Soil in-situ Testing[M]. Beijing: Geological Publishing House, 1997. (in Chinese)
[24] 王俊超. 黄河口潮坪沉积物对水动力作用研究[D]. 青岛: 中国海洋大学, 2004. WANG Junchao. Research of Sediment Response to the Hydrodynamic Action on the Tide Flat of Yellow River[D]. Qingdao: Ocean University of China, 2004. (in Chinese)
-
期刊类型引用(41)
1. 侯瑞彬,潘逸尘,董云瑶,付宇廷,刘蒙蒙. 2023年甘肃积石山M_S6.2地震密集观测记录的区域性差异分析. 世界地震工程. 2025(02): 12-20 . 百度学术
2. 常晁瑜,乔峰,薄景山,绽蓓蕾,谷佳沛,李昊宇,田华俊. 甘肃积石山6.2级地震诱发中川乡流滑成因初探. 防灾减灾工程学报. 2025(02): 349-356 . 百度学术
3. 王兰民,许世阳,王平,王睿,车爱兰,周燕国,吴志坚,王谦,蒲小武,柴少峰,马星宇. 2023年积石山6.2级地震诱发大规模黄土液化流滑的特征与启示. 岩土工程学报. 2024(02): 235-243 . 本站查看
4. 刘港,贾俊,张戈,洪勃,董英,裴赢,薛强,高波. 甘肃积石山地震液化型泥流特征、成因及其对黄河上游盆地地震次生灾害风险评估的启示. 西北地质. 2024(02): 220-229 . 百度学术
5. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 . 百度学术
6. 潘建磊,梁庆国,刘海生,时伟,王丽丽. 黄土液化作用及其次生灾害风险评估方法初探——以积石山M_S6.2地震为例. 地震工程学报. 2024(04): 836-845 . 百度学术
7. 袁近远,崔家伟,李兆焱,袁晓铭,张钰洋. 中国模式下砾性土液化指数评价新方法. 土木工程学报. 2024(09): 98-108 . 百度学术
8. 葛一荀,张洁,黄宏伟. 基于贝叶斯分层模型的液化侧移稳健的易损性分析方法. 同济大学学报(自然科学版). 2024(11): 1658-1669 . 百度学术
9. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 . 百度学术
10. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 . 百度学术
11. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 . 百度学术
12. 代言,邓龙胜,毛伟,范文,李培. 马兰黄土液化特性及孔压模型参数研究. 地震工程学报. 2023(02): 338-345+361 . 百度学术
13. 隆然,刘兴东. 基于致灾机理分析的公路滑坡稳定性评价及治理方案研究. 铁道勘察. 2023(02): 33-37 . 百度学术
14. 贾科敏,许成顺,杜修力,张小玲,宋佳,苏卓林. 可液化倾斜场地的侧向扩展机制分析. 岩土力学. 2023(06): 1837-1848 . 百度学术
15. 罗增文,苏卓林,贾科敏,许成顺. 地震作用下碎石桩场地侧向位移规律研究. 震灾防御技术. 2023(02): 361-368 . 百度学术
16. 王兰民,柴少峰,薄景山,王平,许世阳,李孝波,蒲小武. 黄土地震滑坡的触发类型、特征与成灾机制. 岩土工程学报. 2023(08): 1543-1554 . 本站查看
17. 李孝波,欧阳刚垒,宋霖君,吴义文,徐建元. 黄土高原地区场地设计反应谱特征周期研究. 地震工程学报. 2023(05): 1161-1170 . 百度学术
18. 柴少峰,王兰民,王平,郭海涛,夏晓雨,车高凤,王会娟. 石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究. 岩土工程学报. 2023(12): 2565-2574 . 本站查看
19. 马为功,王兰民,许世阳,李登科,柴少峰. 饱和黄土隧道围岩地震液化特征的振动台试验研究. 岩土工程学报. 2023(S2): 171-176 . 本站查看
20. 李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价. 工程科学学报. 2022(03): 440-450 . 百度学术
21. 程超,钟秀梅,刘钊钊,刘富强,江志杰,王谦,陶冬旺. 饱和黄土动态液化和静态液化机理的差异性研究. 地震工程学报. 2022(01): 136-144 . 百度学术
22. 袁近远,李天宁,王兰民,汪云龙,陈龙伟,李兆焱,袁晓铭,王永志,陈卓识,李瑞山. 砂土液化概率计算新方法. 岩土工程学报. 2022(03): 541-549 . 本站查看
23. 王谦,钟秀梅,高中南,马金莲,万秀红,杨义煊,刘岸果. 门源M6.9地震诱发地质灾害特征研究. 地震工程学报. 2022(02): 352-359 . 百度学术
24. 葛一荀,张洁,祝刘文,程小久,廖先斌,汪华安,孔明,郑文棠,王占华. 砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究. 工程地质学报. 2022(02): 507-519 . 百度学术
25. 包含,马扬帆,兰恒星,彭建兵,张科科,许江波,晏长根,孙强. 基于微结构量化的含渐变带黄土各向异性特征研究. 中国公路学报. 2022(10): 88-99 . 百度学术
26. 苏卓林,贾科敏,许成顺,豆鹏飞,张小玲. 双向地震作用下液化水平和倾斜场地-桩基-桥梁结构地震反应的差异研究. 地震科学进展. 2022(11): 505-512 . 百度学术
27. 宋洋,刘思源,王晨炟. 含水率和干湿循环对原状黄土变形特性的影响. 辽宁工程技术大学学报(自然科学版). 2021(02): 148-155 . 百度学术
28. 王玉峰,林棋文,李坤,史安文,李天话,程谦恭. 高速远程滑坡动力学研究进展. 地球科学与环境学报. 2021(01): 164-181 . 百度学术
29. 颜灵勇,李孝波,欧阳刚垒. 黄土地震滑坡形成机理研究的若干进展. 防灾科技学院学报. 2021(02): 46-53 . 百度学术
30. 马星宇,王兰民,王谦,王平,钟秀梅,蒲小武,刘富强. 饱和黄土液化流动性试验研究. 岩土工程学报. 2021(S1): 161-165 . 本站查看
31. 袁晓铭,费扬,陈龙伟,袁近远,陈同之,张思宇,王义德. 含剧烈地震动作用不同埋深砂土液化判别统一公式. 岩石力学与工程学报. 2021(10): 2101-2112 . 百度学术
32. 李旭东,王平,王丽丽,王会娟,常文斌,钱紫玲. 强震作用下坡顶建筑荷载对边坡稳定性影响研究. 地震工程学报. 2021(05): 1220-1227 . 百度学术
33. 张子东,张晓超,任鹏,崔雪婷. 非饱和黄土动力液化研究——以党家岔滑坡为例. 地震工程学报. 2021(05): 1228-1237 . 百度学术
34. 许成顺,贾科敏,杜修力,王志华,宋佳,张小玲. 液化侧向扩展场地-桩基础抗震研究综述. 防灾减灾工程学报. 2021(04): 768-791 . 百度学术
35. 马晓文,梁庆国,赵涛,周稳弟. 土动力学研究综述及思考. 世界地震工程. 2021(04): 217-230 . 百度学术
36. 许成顺,王冰,杜修力,岳冲,杨钰荣. 循环加载频率对砂土液化模式的影响试验研究. 土木工程学报. 2021(11): 109-118 . 百度学术
37. 郭海涛,许世阳,蒲小武,张晓军,马星宇. 海原地震石碑塬液化滑移地表特征形成机制探讨. 地震工程学报. 2020(05): 1159-1164 . 百度学术
38. 杨博,田文通,孙军杰,刘琨,徐舜华. 海原大地震诱发石碑塬黄土滑坡机制探讨. 地震工程学报. 2020(05): 1165-1172 . 百度学术
39. 马星宇,王兰民,钟秀梅,蒲小武,刘富强,王谦. 地震诱发石碑塬黄土地层液化滑移距离研究. 地震工程学报. 2020(06): 1674-1682 . 百度学术
40. 车福东,王涛,辛鹏,张泽林,梁昌玉,刘甲美. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例. 地质通报. 2020(12): 1981-1992 . 百度学术
41. MA Xingyu,WANG Lanmin,WANG Qian,WANG Ping,ZHONG Xiumei,PU Xiaowu,LIU Fuqiang,XU Xiaowei. Flow Characteristics of Large-Scale Liquefaction-Slip of the Loess Strata in Shibei Tableland, Guyuan City, Induced by the 1920 Haiyuan M8(1/2) Earthquake. Earthquake Research in China. 2020(04): 469-481 . 必应学术
其他类型引用(32)
-
其他相关附件