• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

玄武岩脆性类岩石相似模型材料比选与力学特性测试研究

孔洋, 阮怀宁, 汪璋淳

孔洋, 阮怀宁, 汪璋淳. 玄武岩脆性类岩石相似模型材料比选与力学特性测试研究[J]. 岩土工程学报, 2023, 45(11): 2308-2318. DOI: 10.11779/CJGE20220984
引用本文: 孔洋, 阮怀宁, 汪璋淳. 玄武岩脆性类岩石相似模型材料比选与力学特性测试研究[J]. 岩土工程学报, 2023, 45(11): 2308-2318. DOI: 10.11779/CJGE20220984
KONG Yang, RUAN Huaining, WANG Zhangchun. Selection and mechanical properties testy of similar brittle rock-like model materials of basalt[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2308-2318. DOI: 10.11779/CJGE20220984
Citation: KONG Yang, RUAN Huaining, WANG Zhangchun. Selection and mechanical properties testy of similar brittle rock-like model materials of basalt[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2308-2318. DOI: 10.11779/CJGE20220984

玄武岩脆性类岩石相似模型材料比选与力学特性测试研究  English Version

基金项目: 

国家自然科学基金项目 41831278

中央级公益性科研院所基本科研业务费专项资金项目 Y321003

详细信息
    作者简介:

    孔洋(1989—),男,山东泰安人,博士,工程师,主要从事节理岩体力学响应试验与数值计算方法方面的科研工作。Email: ykong@nhri.cn

  • 中图分类号: TU42;TU45

Selection and mechanical properties testy of similar brittle rock-like model materials of basalt

  • 摘要: 工程开挖区特殊断续柱状节理玄武岩赋存环境往往地质条件复杂、地应力水平较高,玄武岩块体单轴抗压强度高、离散性强,失效破坏脆性张拉劈裂特征显著,原生隐裂隙对强度和变形影响明显。以硬脆性玄武岩为研究对象,通过制备5类质量比模型材料试样,基于单轴压缩试验、巴西劈裂试验与声发射测试等技术手段,在相似比原则的基础上,在应力-应变曲线形式、试样破坏方式、压拉比(脆性指标)与物理力学参数等方面比选了可模拟柱状节理玄武岩岩块力学响应的脆性类岩石相似模型材料。研究成果可为断续柱状节理玄武岩物理模型试验开展各向异性力学响应、损伤演化特征与渗流-应力耦合特性等研究提供技术与材料支撑。
    Abstract: The occurrence environment of special discontinuous columnar jointed basalt in the engineering excavation area often has complex geological conditions and high in-situ stress levels. The basalt block has high uniaxial compressive strength and strong discreteness. Its brittle tensile splitting failure characteristics are obvious. The primary hidden fracture has obvious influences on the strength and deformation of the basalt block. Taking the hard and brittle basalt as the research object, by preparing the model material samples with 5 types of mass ratios, based on the uniaxial compression tests, Brazilian splitting tests and acoustic emission tests and other technical means, and on the principle of similarity ratio, the brittle rock-like model materials that can be used to simulate the mechanical response of columnar jointed basalt blocks are selected in terms of the form of stress-strain curve, failure mode of samples, compression-tensile ratio (brittleness index) and physical and mechanical parameters. The research results can provide technical and material supports for the researches on the physical model test on the anisotropic mechanical response, damage evolution characteristics and seepage-stress coupling characteristics of discontinuous columnar jointed basalt.
  • 软土地基处理是新建港口码头、老旧堆场码头改造等工程建设的重点和难点,其对地基变形要求十分严格。若地基处理不当,后期在长时间高强度堆载下极易产生不均匀沉降等灾害,严重影响码头和堆场等工程的正常使用。随着地基处理技术的发展,CFG桩[1-3]和树根桩[4-6]桩网复合地基已成为有效的地基处理方式,并被广泛应用于各工程领域软土地基处理中。

    单桩承载特性决定桩网复合地基的承载力特性。众多学者通过室内模型试验、现场试验及数值模拟等方法研究单桩承载力特性。左宏亮等[7]通过现场试验研究了螺杆灌注桩单桩竖向承载力,实测结果比规范计算得到的承载力要大。马天忠等[8]通过室内模型试验研究了黄土地区单桩、4根和8根长短组合桩基础承载性状。郅彬[9]等进行了CFG桩复合地基现场静载荷试验,研究了复合地基承载性状和桩土间相互作用。

    某码头散货#16堆场地基采用真空联合堆载预压加固,轨道梁基础和靠近南柳河侧岸坡均采用水泥搅拌桩复合地基加固。近期,堆场沿堆场纵向中部发生往南柳河一侧的岸坡推移现象,堆场产生了不同程度的损坏,必须重新进行加固处理,以满足一次性达到承载350 kPa的使用要求。

    钻探资料显示,堆场区地基土层自上而下为①2素填土、②1淤泥质黏土、②2粉细砂、③2中粗砂、③4粉质黏土、④1黏土及④2黏土。表 1列出了其主要物理力学性质指标,软土地基不能满足堆场的变形和承载力要求,采用桩网复合地基进行加固,其中典型区采用插筋CFG桩,推移区采用树根桩。

    表  1  土的物理性质指标
    Table  1.  Physical properties of soil
    土层 含水率/% 密度/(g·cm-3) 厚度/m
    典型区 推移区
    2素填土 32.0 1.91 2.5 2.9
    1淤泥质黏土 50.8 1.72 6.2 9.9
    2粉细砂 1.85 3.2
    2中粗砂 1.85 2.0
    4粉质黏土 31.0 1.92 3.2 5.8
    1黏土 42.3 1.77 3.2 1.5
    2黏土 41.6 1.72
    下载: 导出CSV 
    | 显示表格

    典型区CFG桩和推移区树根桩分别进行了3根单桩竖向抗压静载试验,以检验单桩竖向抗压承载力是否满足设计要求。CFG桩桩身强度C30,桩顶插入钢筋笼,插筋长度≥5 m,桩径350 mm,桩长1根15 m、2根17 m。树根桩桩身强度C30,内插φ133 mm、壁厚5 mm的无缝钢管,桩径300 mm,桩长25 m。

    试验采用快速荷载法,加载分为10级,每级荷载为预估极限承载力的1/10,其中第一级取分级荷载的2倍,每级荷载施加后按第5,15,30,45,60,75分钟测读桩顶沉降量,某级荷载作用下,试桩桩顶总沉降量超过40 mm时或桩顶沉降量大于前一级荷载作用下沉降量的2倍,终止加载[10]

    图 1给出了CFG桩单桩静荷载试验Qs曲线,由图 1可知:①荷载–沉降曲线初始阶段,近似为直线,且斜率较小。这阶段侧阻力随沉降的增大而线性增长,端阻力未发挥作用。②荷载–沉降曲线非线性变化阶段,随着荷载的增加,沉降增量也逐渐增大。这阶段侧阻力随沉降增加非线性增长,端阻力也逐渐发挥。③荷载–沉降曲线存在明显拐点,拐点后沉降增量显著增大,这阶段侧阻力和端阻力均已达到极限状态。

    图  1  CFG桩单桩静荷载试验Qs曲线
    Figure  1.  Qs curves of static load tests on single CFG pile

    图 2给出了CFG桩单桩静荷载试验s–lgt曲线,从图中可以看出,荷载较小时,沉降增量较小,s–lgt曲线较平缓,随着荷载的增加,沉降增量越来越大,s–lgt曲线越来越陡,甚至出现明显向下弯曲。

    图  2  CFG桩单桩静荷载试验s–lgt曲线
    Figure  2.  s–lgt curves of static load tests on single CFG pile

    根据《建筑基桩检测技术规范》[11]建议的单桩竖向受压承载力确定方法,取Qs曲线发生明显陡降的起点对应的荷载值或取s–lgt曲线尾部明显向下弯曲的前一级荷载值作为单桩的竖向承载力,综合分析图 12,3根CFG桩单桩的竖向极限承载力分别800,800,1000 kN,见表 2

    表  2  CFG桩单桩极限承载力
    Table  2.  Ultimate bearing capacities of single CFG pile
    桩号 桩长/m 极限承载力/kN
    SZ2-2 15 800
    SZ2-3 17 800
    SZ2-6 17 1000
    下载: 导出CSV 
    | 显示表格

    图 3给出了树根桩单桩静荷载试验Qs曲线,图 4给出了树根桩单桩静荷载试验s–lgt曲线,树根桩的Qs曲线和s–lgt曲线的变化规律与CFG桩基本一致。表 3列出了树根桩单桩竖向极限承载力结果,对比表 23可以看出,树根桩单桩竖向极限承载力要高于CFG桩。

    图  3  树根桩单桩静荷载试验Qs曲线
    Figure  3.  Qs curves of static load tests on single root pile
    图  4  树根桩单桩静荷载试验s–lgt曲线
    Figure  4.  s–lgt curves of static load tests on single root pile
    表  3  树根桩单桩极限承载力
    Table  3.  Ultimate bearing capacities of single root pile
    桩号 #1桩 #2桩 #3桩
    极限承载力/kN 1260 1140 1260
    下载: 导出CSV 
    | 显示表格

    表 4列出了CFG桩和树根桩单桩静荷载试验极限承载力下单桩刚度,从此可以看出,CFG桩的单桩刚度只有19~43 kN/mm,均值为33 kN/mm,树根桩的单桩刚度达63~90 kN/mm,均值为77 kN/mm,树根桩的单桩刚度明显高于CFG桩。

    表  4  极限承载力下单桩刚度
    Table  4.  Stiffnesses of piles of under ultimate bearing capacity
    CFG桩 树根桩
    桩号 沉降/mm 刚度/(kN·mm-1) 桩号 沉降/mm 刚度/(kN·mm-1)
    SZ2-2 18.49 43.27 #1桩 19.97 63.09
    SZ2-3 42.56 18.80 #2桩 14.43 79.00
    SZ2-6 26.27 38.07 #3桩 13.96 90.26
    下载: 导出CSV 
    | 显示表格

    表 5列出了CFG桩和树根桩单桩静荷载试验最大荷载下桩顶沉降,由此可知,CFG桩的最大荷载只有1100 kN,最大沉降却高达200 mm,树根桩的最大荷载达1900 kN,最大沉降却只有92 mm,树根桩的最大沉降明显小于CFG桩。树根桩的最大回弹率为20%。

    表  5  最大试验荷载下桩顶沉降
    Table  5.  Settlements at pile top under maximum test loads
    CFG桩 树根桩
    桩号 最大荷载/kN 最大沉降/mm 桩号 最大荷载/kN 最大沉降/mm 最大回弹/mm 残余沉降/mm 回弹率/%
    SZ2-2 1000 87.74 #1桩 1800 85.00 17.24 67.76 20.28
    SZ2-3 1000 221.18 #2桩 1900 92.00 11.00 81.00 11.96
    SZ2-6 1100 185.14 #3桩 1800 41.61 6.17 35.31 15.14
    下载: 导出CSV 
    | 显示表格

    (1)CFG桩和树根桩单桩静荷载试验Qs曲线存在明显拐点。随着荷载的增加,拐点前沉降增量缓慢增大,拐点后沉降增量显著增大。树根桩单桩竖向极限承载力要高于CFG桩。

    (2)荷载较小时,CFG桩和树根桩单桩静荷载试验s–lgt曲线较平缓,随着荷载的增加,s–lgt曲线越来越陡,甚至出现明显向下弯曲。

    (3)极限承载力下CFG桩的单桩刚度为19~43 kN/mm,树根桩为63~90 kN/mm,树根桩明显高于CFG桩。

    (4)CFG桩试验的最大荷载只有1100 kN,桩顶最大沉降却高达200 mm,树根桩的最大荷载达1900 kN,最大沉降却只有92 mm,明显小于CFG桩。

    致谢: 感谢国家留学基金委公派出国联合培养博士生项目,由衷鸣谢澳大利亚纽卡斯尔大学卓越岩土工程中心Olivier Buzzi教授与ED Building试验室全体工作人员。
  • 图  1   坝址区柱状节理玄武岩块体典型破坏特征

    Figure  1.   Typical failure characteristics of columnar jointed basalt blocks in dam site area

    图  2   相似模型材料比选试验加载装置及测试试样

    Figure  2.   Test loading apparatus and prepared samples for selection of similar model materials

    图  3   不同配比试样单轴压缩试验轴向应力-应变曲线

    Figure  3.   Axial stress-strain curves of samples with different quality ratios from uniaxial compression tests

    图  4   不同配比试样单轴压缩试验典型破坏模式

    (a) 柱状节理玄武岩[29-30] (b) R1配比试样

    Figure  4.   Typical failure characteristics of samples with different quality ratios from uniaxial compression tests

    图  5   不同配比试样巴西劈裂试验抗拉强度-应变曲线

    Figure  5.   Tensile strength-strain curves of samples with different quality ratios from Brazil splitting tests

    图  6   不同配比试样巴西劈裂试验典型破坏模式

    Figure  6.   Typical failure characteristics of samples with different quality ratios from Brazil splitting tests

    图  7   R1配比试样单轴压缩、巴西劈裂试验声发射特征曲线

    Figure  7.   Acoustic emission characteristic curves of samples with R1 quality ratio from uniaxial compression tests and Brazil splitting tests

    图  8   相似模型材料Hoek三轴剪切试验结果

    Figure  8.   Hoek triaxial test results of similar model materials

    表  1   典型柱状节理玄武岩块体力学参数统计表

    Table  1   Statistical table of mechanical parameters of typical columnar jointed basalt blocks

    文献来源 岩石描述 密度 UCS 抗拉强度 变形模量 弹性模量 泊松比 黏聚力 摩擦角
    ρ/(g·cm-3) σc/MPa σt/MPa Ed/GPa E/GPa ν c/MPa ϕ/(°)
    胡伟等[10] 含隐裂隙玄武岩 55.9-194
    (106)
    17.5~38.6
    (29.1)
    30~55.7
    (42.9)
    0.006~0.263
    石安池等[14]
    Wei等[15]
    自然状态参数 2.85~2.94
    (2.90)
    47.7~255
    (114)
    2.51~10.1
    (6.01)
    47~83.4
    (65.1)
    50.9~86.6
    (68.3)
    0.17~0.26
    (0.23)
    10.2~15
    (12.3)
    江权等[16]
    Jiang等[17]
    平行于柱轴方向 2.70 117.6 42.1 0.29
    垂直于柱轴方向 2.70 179.5 38.2 0.25
    Ji等[18] 镶嵌块状结构 2.80 135.2 6.10 56.8 0.22 12.4 54.40
    镶嵌破碎结构 2.73 76.2 4.30 43.0 0.23 8.6 50.30
    Jin等[19-20] 考虑隐晶质裂纹 1.25 32.3 0.21 1.3 40
    Jin等[21] 第一类CJB 2.83~2.93 47.7~255 2.51~10.1 30~86.6 0.17~0.26 10~13 45~50
    注:“()”内为均值;“—”表示无该值或该值缺项;CJB为柱状节理玄武岩(Columnar Jointed Basalt)的简称;UCS为单轴抗压强度(uniaxial compression strength)简称。
    下载: 导出CSV

    表  2   模型材料配比方案表

    Table  2   Proportion schemes of model materials

    编号 质量比 试样尺寸/mm 高径比 数量
    R1 1︰0.5︰0.4︰0.002 Φ53.5×h107.0 2 3
    R2 1︰1︰0.4︰0.002 Φ53.5×h107.0 2 3
    R3 1︰2︰0.5︰0.002 Φ53.5×h107.0 2 3
    R4 1︰3︰0.6︰0.002 Φ53.5×h107.0 2 3
    R5 1︰4︰0.8︰0.002 Φ53.5×h107.0 2 3
    注:试样尺寸为单轴压缩试验的试样尺寸,R1-R5配比巴西劈裂试验试样尺寸为Φ53.5 mm×h27.0 mm。
    下载: 导出CSV

    表  3   不同配比试样测试结果统计表

    Table  3   Statistical table of test results for samples with different quality ratios

    配比编号 UCS σc比值 抗拉强度 σt比值 模量 E比值 压拉比
    σc/MPa CJB/Ri σt/MPa CJB/Ri E/GPa CJB/Ri σc/σt
    R1 70.40 1.74 4.43 1.50 13.86 1.65 15.89
    R2 42.11 2.91 3.92 1.70 7.73 2.97 10.74
    R3 56.54 2.17 4.97 1.34 11.64 1.97 11.38
    R4 30.54 4.01 3.53 1.89 7.17 3.20 8.65
    R5 17.75 6.90 3.23 2.06 5.55 4.13 5.50
    CJB[29-30] 122.41 6.66 22.93 18.39
    注:模量E值取变形模量Et50
    下载: 导出CSV
  • [1] 杨更社, 孙钧. 中国岩石力学的研究现状及其展望分析[J]. 西安公路交通大学学报, 2001, 21(3): 5-9. doi: 10.3321/j.issn:1671-8879.2001.03.002

    YANG Gengshe, SUN Jun. On the present state and development of rock mechanics in China[J]. Journal of Xi'an Highway University, 2001, 21(3): 5-9. (in Chinese) doi: 10.3321/j.issn:1671-8879.2001.03.002

    [2] 吴刚. 工程岩体卸荷破坏机制研究的现状及展望[J]. 工程地质学报, 2001, 9(2): 174-181. doi: 10.3969/j.issn.1004-9665.2001.02.011

    WU Gang. Current status and prospects of research on mechanism for unloading failure of engineering rock mass[J]. Journal of Engineering Geology, 2001, 9(2): 174-181. (in Chinese) doi: 10.3969/j.issn.1004-9665.2001.02.011

    [3] 曹平. 各向异性岩体力学的理论与应用研究[D]. 长沙: 中南大学, 1990.

    CAO Ping. Theoretical and Applied Research on Anisotropic Rock Mass Mechanics[D]. Changsha: Central South University, 1990. (in Chinese)

    [4] 徐卫亚, 郑文棠, 石安池. 水利工程中的柱状节理岩体分类及质量评价[J]. 水利学报, 2011, 42(3): 262-270. doi: 10.13243/j.cnki.slxb.2011.03.013

    XU Weiya, ZHENG Wentang, SHI Anchi. Classification and quality assessment of irregular columnar jointed basaltic rock mass for hydraulic engineering[J]. Journal of Hydraulic Engineering, 2011, 42(3): 262-270. (in Chinese) doi: 10.13243/j.cnki.slxb.2011.03.013

    [5] 孔洋. 柱状节理岩体变形破坏机制与渗流-应力耦合特性研究[D]. 南京: 河海大学, 2020.

    KONG Yang. Deformation and Failure Mechanism, and Seepage-Stress Coupling Characteristics of Columnar Jointed Rock Masses[D]. Nanjing: Hohai University, 2020. (in Chinese)

    [6] 张春生, 徐建荣, 吉华, 等. 白鹤滩水电站柱状节理玄武岩力学特性及松弛控制[J]. 岩石力学与工程学报, 2022, 41(7): 1297-1309. doi: 10.13722/j.cnki.jrme.2021.1175

    ZHANG Chunsheng, XU Jianrong, JI Hua, et al. Mechanical characteristics and relax control of columnar jointed basalt at Baihetan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(7): 1297-1309. (in Chinese) doi: 10.13722/j.cnki.jrme.2021.1175

    [7] 丰光亮, 张建聪, 江权, 等. 开挖强卸荷下柱状节理岩体时效破裂过程协同观测与机制分析[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3041-3051. doi: 10.13722/j.cnki.jrme.2021.0200

    FENG Guangliang, ZHANG Jiancong, JIANG Quan, et al. Synergistic observation and mechanism analysis of time-dependent fracture process of columnar jointed rockmass under strong unloading during excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3041-3051. (in Chinese) doi: 10.13722/j.cnki.jrme.2021.0200

    [8] 单治钢, 倪卫达, 洪望兵, 等. 白鹤滩水电站枢纽区重大工程地质问题及对策研究[C]//2021年全国工程地质学术年会论文集, 青岛, 2021.

    SHAN Zhigang, NI Weida, HONG Wangbing, et al. Major engineering geological problems and countermeasures of Baihetan hydropower station[C]//Proceedings of the 2021 National Engineering Geology Annual Conference, Qingdao, 2021. (in Chinese)

    [9] 张建聪, 江权, 郝宪杰, 等. 高应力下柱状节理玄武岩应力-结构型塌方机制分析[J]. 岩土力学, 2021, 42(9): 2556-2568, 2577. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109024.htm

    ZHANG Jiancong, JIANG Quan, HAO Xianjie, et al. Analysis of stress-structural collapse mechanism of columnar jointed basalt under high stress[J]. Rock and Soil Mechanics, 2021, 42(9): 2556-2568, 2577. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109024.htm

    [10] 胡伟, 邬爱清, 陈胜宏, 等. 含隐裂隙柱状节理玄武岩单轴力学特性研究[J]. 岩石力学与工程学报, 2017, 36(8): 1880-1888. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708007.htm

    HU Wei, WU Aiqing, CHEN Shenghong, et al. Mechanical properties of columnar jointed basalt rock with hidden fissures under uniaxial loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 1880-1888. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708007.htm

    [11] 孟国涛, 樊义林, 江亚丽, 等. 白鹤滩水电站巨型地下洞室群关键岩石力学问题与工程对策研究[J]. 岩石力学与工程学报, 2016, 35(12): 2549-2560. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612020.htm

    MENG Guotao, FAN Yilin, JIANG Yali, et al. Key rock mechanical problems and measures for huge Caverns of Baihetan hydropower plant[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2549-2560. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612020.htm

    [12] 刘国锋, 冯夏庭, 江权, 等. 白鹤滩大型地下厂房开挖围岩片帮破坏特征、规律及机制研究[J]. 岩石力学与工程学报, 2016, 35(5): 865-878. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201605001.htm

    LIU Guofeng, FENG Xiating, JIANG Quan, et al. Failure characteristics, laws and mechanisms of rock spalling in excavation of large-scale underground powerhouse Caverns in Baihetan[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 865-878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201605001.htm

    [13] 倪绍虎, 何世海, 陈益民, 等. 柱状节理玄武岩的破坏模式、破坏机制及工程对策[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3064-3075. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1054.htm

    NI Shaohu, HE Shihai, CHEN Yimin, et al. The failure modes, failure mechanisms and countermeasures of columnar jointed basalt rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3064-3075. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1054.htm

    [14] 石安池, 唐明发, 单治钢, 等. 金沙江白鹤滩水电站可行性研究选坝阶段柱状节理玄武岩专题研究工程地质研究报告[R]. 杭州: 中国水电顾问集团华东勘测设计研究院, 2006.

    SHI An-chi, TANG Fa-ming, SHAN Zhi-gang, et al. Feasibility Study of Jinsha River Baihetan Hydropower Station Project Geology Research Report on Columnar Jointed Basalt in Dam Selection Stage[R]. Hangzhou: PowerChina Huadong Engineering Corporation Limited, 2006. (in Chinese)

    [15]

    WEI Y, XU M, WANG W, et al. Feasibility of columnar jointed basalt used for high-arch dam foundation[J]. Journal of Rock Mechanics & Geotechnical Engineering, 2011, 3(S1): 461-468.

    [16] 江权, 冯夏庭, 樊义林, 等. 柱状节理玄武岩各向异性特性的调查与试验研究[J]. 岩石力学与工程学报, 2013, 32(12): 2527-2535. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312020.htm

    JIANG Quan, FENG Xiating, FAN Yilin, et al. Survey and laboratory study of anisotropic properties for columnar jointed basaltic rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2527-2535. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312020.htm

    [17]

    JIANG Q A, FENG X T, HATZOR Y H, et al. Mechanical anisotropy of columnar jointed basalts: an example from the Baihetan hydropower station, China[J]. Engineering Geology, 2014, 175: 35-45.

    [18]

    JI H, ZHANG J C, XU W Y, et al. Experimental investigation of the anisotropic mechanical properties of a columnar jointed rock mass: observations from laboratory-based physical modelling[J]. Rock Mechanics and Rock Engineering, 2017, 50(7): 1919-1931.

    [19]

    JIN C Y, YANG C X, FANG D, et al. Study on the failure mechanism of basalts with columnar joints in the unloading process on the basis of an experimental cavity[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1275-1288.

    [20]

    JIN C Y, FENG X T, YANG C X, et al. Application of D-CRDM method in columnar jointed basalts failure analysis[J]. Journal of Applied Mathematics, 2013, 2013: 1-10.

    [21]

    JIN C Y, LI S G, LIU J P. Anisotropic mechanical behaviors of columnar jointed basalt under compression[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(1): 317-330.

    [22] 夏自锋. 柱状节理岩体的相似材料模型试验与数值模拟研究[D]. 沈阳: 东北大学, 2014.

    XIA Zifeng. Research on similar material model test and numerical simulation for columnar jointed rock mass[D]. Shenyang: Northeastern University, 2014. (in Chinese)

    [23] 李晓红. 岩石力学实验模拟技术[M]. 北京: 科学出版社, 2007.

    LI Xiaohong. Simulation Technology of Rock Mechanics Experiment[M]. Beijing: Science Press, 2007. (in Chinese)

    [24] 周慧颖, 李树忱, 段壮, 等. 玄武岩相似材料配制及其物理力学参数研究[J]. 人民长江, 2021, 52(6): 130-135, 147. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202106022.htm

    ZHOU Huiying, LI Shuchen, DUAN Zhuang, et al. Physical and mechanical parameters analysis and preparation of similar materials for basalt[J]. Yangtze River, 2021, 52(6): 130-135, 147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202106022.htm

    [25] 柯志强, 王环玲, 徐卫亚, 等. 含横向节理的柱状节理岩体力学特性试验研究[J]. 岩土力学, 2019, 40(2): 660-667. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902028.htm

    KE Zhiqiang, WANG Huanling, XU Weiya, et al. Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints[J]. Rock and Soil Mechanics, 2019, 40(2): 660-667. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902028.htm

    [26] 巢志明, 王环玲, 徐卫亚, 等. 循环加卸载下柱状节理材料渗透率和孔隙度演化规律研究[J]. 岩石力学与工程学报, 2017, 36(1): 124-141. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201701011.htm

    CHAO Zhiming, WANG Huanling, XU Weiya, et al. Permeability and porosity of columnar jointed rock under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 124-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201701011.htm

    [27] 巢志明, 王环玲, 徐卫亚, 等. 柱状节理岩体渗透性模型试验研究[J]. 岩土工程学报, 2016, 38(8): 1407-1416. doi: 10.11779/CJGE201608007

    CHAO Zhiming, WANG Huanling, XU Weiya, et al. Model tests on permeability of columnar jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1407-1416. (in Chinese) doi: 10.11779/CJGE201608007

    [28] 肖桃李, 李新平, 郭运华. 三轴压缩条件下单裂隙岩石的破坏特性研究[J]. 岩土力学, 2012, 33(11): 3251-3256. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201211009.htm

    XIAO Taoli, LI Xinping, GUO Yunhua. Experimental study of failure characteristic of single jointed rock mass under triaxial compression tests[J]. Rock and Soil Mechanics, 2012, 33(11): 3251-3256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201211009.htm

    [29]

    LIU G, XIAO F K, CHENG Q L, et al. Experimental study on acoustic emission characteristics of dry and saturated basalt columnar joints under uniaxial compression and tensile damage[J]. Shock and Vibration, 2019, 2019: 1-12.

    [30] 刘刚. 柱状节理玄武岩破坏全过程声发射监测研究[D]. 哈尔滨: 黑龙江科技大学, 2014.

    LIU Gang. The Process Columnar Joints Basalt Damage Acoustic Emission Monitoring Research[D]. Harbin: Heilongjiang University of Science and Technology, 2014. (in Chinese)

    [31] 张春生, 朱永生, 褚卫江, 等. 白鹤滩水电站隐晶质玄武岩力学特性及Hoek-Brown本构模型描述[J]. 岩石力学与工程学报, 2019, 38(10): 1964-1978. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910003.htm

    ZHANG Chunsheng, ZHU Yongsheng, CHU Weijiang, et al. Mechanical behaviors of basalt at Baihetan hydropower station and simulation with Hoek-Brown constitutive model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 1964-1978. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910003.htm

    [32] 张传庆, 刘振江, 张春生, 等. 隐晶质玄武岩破裂演化及破坏特征试验研究[J]. 岩土力学, 2019, 40(7): 2487-2496. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907003.htm

    ZHANG Chuanqing, LIU Zhenjiang, ZHANG Chunsheng, et al. Experimental study on rupture evolution and failure characteristics of aphanitic basalt[J]. Rock and Soil Mechanics, 2019, 40(7): 2487-2496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907003.htm

    [33]

    HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974, 11(10): 389-392.

  • 期刊类型引用(4)

    1. 刘学伟,雷俊强,刘滨,姚文杰,白纪成,刘泉声. 含软弱夹层复合层状试样力学行为及能量演化特性研究. 采矿与岩层控制工程学报. 2025(01): 130-144 . 百度学术
    2. 孔洋,阮怀宁,张桂荣,何宁,汪璋淳. 玄武岩节理系数及其与强度和变形特性的关系研究. 岩土工程学报. 2024(S1): 132-137 . 本站查看
    3. 孔洋,阮怀宁,汪璋淳. 模拟柱状节理玄武岩试样的失效模式与各向异性特征试验研究. 岩土力学. 2024(S1): 259-266 . 百度学术
    4. 孔洋,阮怀宁,张桂荣,何宁,汪璋淳. 玄武岩脆性相似材料的起裂和损伤强度特征试验研究. 岩土工程学报. 2023(S1): 153-157 . 本站查看

    其他类型引用(4)

图(8)  /  表(3)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  50
  • PDF下载量:  83
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-08-11
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2023-10-31

目录

/

返回文章
返回