Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

复合衬垫中污染物一维瞬态扩散–对流运移规律研究

冯世进, 彭明清, 陈樟龙, 陈宏信

冯世进, 彭明清, 陈樟龙, 陈宏信. 复合衬垫中污染物一维瞬态扩散–对流运移规律研究[J]. 岩土工程学报, 2022, 44(5): 799-809. DOI: 10.11779/CJGE202205002
引用本文: 冯世进, 彭明清, 陈樟龙, 陈宏信. 复合衬垫中污染物一维瞬态扩散–对流运移规律研究[J]. 岩土工程学报, 2022, 44(5): 799-809. DOI: 10.11779/CJGE202205002
FENG Shi-jin, PENG Ming-qing, CHEN Zhang-long, CHEN Hong-xin. One-dimensional transport of transient diffusion-advection of organic contaminant through composite liners[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 799-809. DOI: 10.11779/CJGE202205002
Citation: FENG Shi-jin, PENG Ming-qing, CHEN Zhang-long, CHEN Hong-xin. One-dimensional transport of transient diffusion-advection of organic contaminant through composite liners[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 799-809. DOI: 10.11779/CJGE202205002

复合衬垫中污染物一维瞬态扩散–对流运移规律研究  English Version

基金项目: 

国家自然科学基金杰出青年基金项目 41725012

国家重点研发计划项目 2020YFC1808104

国家自然科学基金重点基金项目 41931289

国家自然科学基金面上项目 42077250

详细信息
    作者简介:

    冯世进(1978—),男,博士,教授,主要从事环境岩土方向的教学和科研工作。E-mail: fsjgly@tongji.edu.cn

  • 中图分类号: TU43

One-dimensional transport of transient diffusion-advection of organic contaminant through composite liners

  • 摘要: 采用GMB(土工膜)/GCL(膨润土防水毯)/SL(土质垫层)复合衬垫全瞬态扩散–对流运移解析模型,考察了对流区域对污染物运移计算结果的影响;探讨了用渗滤液水头高度替代衬垫水头差的简化计算的可行性;探究了土工膜类型对复合衬垫防污阻隔性能的影响;分析了对流、扩散、吸附作用对渗沥液中典型有机污染物运移规律的影响。研究结果表明:①渗沥液水头为10,5,3,0.3 m的情况下,采用全局对流模型相比局部对流模型的击穿时间相应分别高出了233%,151%,111%,24%;②采用渗沥液水头替代水头差的简化计算结果是可行的;③采用f-HDPE土工膜的复合衬垫,其击穿时间比采用PVC,LLDPE,HDPE的分别提高了36%,33%,22%;④渗沥液水头为10,5,1 m时,忽略对流作用会使击穿时间分别被高估68%,34%,6%;⑤孔洞频数由2.5增大到50,30,10,5个/(103 m2),击穿时间分别缩短了54%,41%,16%,6%;⑥SL有效扩散系数降低90%,衬垫击穿时间提高了2~6倍;SL吸附系数从1 mL/g提升到5,15,30,50 mL/g,击穿时间分别提升了311%,1086%,2249%,3798%。以上对复合衬垫防污阻隔机理的研究结果,可为实践中衬垫的使用和改进提供一定的参考和建议。
    Abstract: Using the fully transient diffusion-advection transport model for transport of organic contaminant in GMB/GCL/SL composite liner, a series of parameter sensitivity studies are conducted to analyze the influences of several important parameters on the barrier performance of the composite liner. The results show that: (1) When the leachate head is 10, 5, 3 and 0.3 m, the breakthrough time obtained by the full advection model is higher by 233%, 151%, 111% and 24% than that obtained by the local advection model, respectively. (2) It is appropriate to use hw as an alternative for hd for simplification. (3) The breakthrough time of the composite liner with f-HDPE geomembrane is 36%, 33% and 22% higher than that with PVC, LLDPE and HDPE, respectively. (4) When the leachate head is 10, 5 and 1 m, the breakthrough time will be overestimated due to ignoring the effects of advection by 68%, 34% and 6%, respectively. (5) When the frequency of holes increases from 2.5 to 50, 30, 10 and 5 ha-1, the breakthrough time decreases by 54%, 41%, 16% and 6%, respectively. (6) The effective diffusion coefficient of SL decreases by 90%, and the breakthrough time of the liner increases by 2 ~ 6 times. The adsorption coefficient of SL increases from 1 mL/g to 5, 15, 30 and 50 mL/g, and the breakthrough time increases by 311%, 1086%, 2249% and 3798%, respectively. The above research results may provide some reference and suggestions for the use and improvement of the liner in practice.
  • 西北地区黄土分布广泛,地形崎岖、沟壑纵横,施工前及竣工后滑坡、溜坍等黄土边坡失稳现象时有发生[1]。边坡失稳常常造成周边基础建筑破坏和威胁人民群众生命财产安全,故对边坡稳定性进行合理分析极其重要。

    现有的边坡稳定性分析方法有定性分析法和定量分析法[2-3],其中极限平衡法、有限单元法等方法应用较为广泛。学者们对以上边坡稳定性分析方法做了进一步的研究,如李梦姿等[4]提出了考虑抗拉强度部分剪断的C-F准则和林姗等[5]提出边坡稳定性分析的虚单元强度折减技术。然而黄土高边坡经常采用多级放坡的形式,不同于单级边坡,多级边坡不仅需要保证边坡整体稳定,而且还需考虑到潜在的局部失稳,因此如何准确评价该类边坡稳定性并确定其整体及局部滑移面位置是亟待解决的难点问题。

    目前,有部分学者对多级边坡稳定性进行了研究。时卫民等[6]给出滑移面为直线的阶梯形边坡稳定分析的简化计算公式,但是经大量试验和工程经验发现边坡滑移面多为圆弧面;李忠等[7]提出一种由计算机搜索法求解多阶边坡最危险滑移面的新模型和胡晋川等[8]采用离心模型试验和数值模拟软件对某边坡进行稳定分析,但是都没有进行多级边坡稳定性的计算方法的研究;年廷凯等[9]提出了多阶多层复杂边坡稳定性的通用极限分析上限方法,但其采用强度折减法计算,多级边坡稳定性计算和滑移面搜索过程较为繁琐,精确度较低。因此,考虑多因素影响的多级边坡稳定性计算方法和多级边坡滑移面的搜索模型均是迫切需要解决的问题。

    影响多级边坡是否稳定的因素较多,特别是放坡级数、坡高、坡率、重度、黏聚力、摩擦角等因素对有其不同程度的影响,因此不少学者在边坡稳定性设计参数敏感度分析方面做了大量的研究工作。宛良朋等[10]以大岗山坝肩边坡为例,采用变形模量、凝聚力和内摩擦角等因素进行边坡敏感性分析,但是其没有进行放坡级数因素影响边坡稳定性的研究。Zai等[11]提出了一种广义概率密度演化方法(GPDEM)来评估影响边坡稳定性多个因素的敏感性,应指出该研究仅评估了各因素对边坡稳定性影响的重要性,没有依托稳定性计算做进一步研究。因此,需对放坡级数、坡高、坡率、重度、黏聚力、摩擦角等多级高边坡稳定性因素进行敏感性分析,同时根据敏感性分析结果对提出的多级黄土边坡稳定性公式进行修正。

    综上所述,针对现有多级边坡稳定性分析方法研究的不足,本文基于瑞典条分法建立了一种多级黄土高边坡稳定计算方法和多级边坡滑移面搜索模型,同时,进行多级边坡稳定性敏感性分析并修正多级黄土高边坡稳定计算方法,最后采用数值模拟验证该计算方法。研究成果可为类似多级黄土边坡支护工程提供依据。

    对黄土高边坡而言,经常采用多级放坡的形式来减弱土体的下滑力以减少边坡支护的成本。为了研究多级黄土高边坡的稳定性问题,基于瑞典条分法,推导了适用于多级均质边坡稳定安全系数计算的通用公式和滑移面搜索模型。

    根据多级黄土高边坡的形状、土质、滑移面位置和形状等基本特征,以及瑞典条分法的相关假定,提出以下3个基本假定:①边坡为匀质黄土边坡;②滑移面为圆弧面;③不同滑条间只有水平作用力。

    (1)基本假设

    假设为n级边坡,其中第i级边坡(从上至下顺序)的坡高为hi,坡度为1:mi,且第i级边与第i-1级边坡之间坡台为bi-1,如图 1所示。均质黄土的重度为γ,内摩擦角为φ、黏聚力为c

    图  1  n级边坡示意图
    Figure  1.  Schematic diagram of n-stage slope

    (2)多级边坡稳定性系数计算公式

    依然假设滑移面圆心为(x0,y0),圆半径为R,如图 2所示。进行积分表达式的推导。按照古典的瑞典条分法土坡稳定安全系数的定义,对多级均质土坡仍然满足:

    图  2  n级边坡稳定安全系数积分表达式推导示意图
    Figure  2.  Schematic diagram for derivation of integral expression for safety factor of n-stage slope
    Fs=cli+tanφWicosαiWisinαi (1)

    令滑弧总长L=liN=WicosαiS=Wisinα。式中滑移面弧长LNS分别为

    L=xCxARdxR2(xx0)2, (2)
    N=γ[0A(y0+R2(xx0)2)R2(xx0)2Rdx+
    n1j=0j+1k=jmnkhnkjk=jmnkhnk(xmnj+Cnjy0+R2(xx0)2)
    R2(xx0)2RdxBnj=1mjhj(hy0+R2(xx0)2)
    R2(xx0)2Rdx)+n1j=1bnj+jk=jmnkhnkjk=jmnkhnk(xmnj+Cnjy0+R2(xx0)2RdxR2(xx0)2)], (3)
    S=γ[0A(y0+R2(xx0)2)(xx0)Rdx+
    n1j=0j+1k=jmnkhnkjk=jmnkhnk(xmnj+Cnjy0+R2(xx0)2)(xx0)Rdx+ Bnj=1mjhj(hy0+R2(xx0)2)(xx0)Rdx+n1j=1bnj+jk=jmnkhnkjk=jmnkhnk(xmnj+Cnjy0+R2(xx0)2)
    (xx0)Rdx] (4)

    由式(1)~(4)可知,当边坡滑移面已知时,即可以计算多级边坡的稳定安全系数。

    对于边坡而言,稳定安全系数与潜在滑移面联系紧密,故确定了滑移面后才能计算边坡的稳定安全系数。根据第1.2节多级边坡稳定性公式和边坡工程实践,以稳定安全系数最小为搜索目标,可以得到基于单目标优化理论的多级边坡滑移面搜索模型:

     min FS(xA,xC,R)s.t.{infxAxAsupxAinfxCxCsupxCinfRRsupRR>(xCxA)2+H22 (5)

    式中,xAA点横坐标,xCC点横坐标,R为滑移面半径,H为边坡坡高。

    该模型能够自动搜索多级边坡的滑移面并计算其稳定安全系数,搜索的参数与边坡形状联系较为密切,有利于计算机编程的实现。故采用matlab软件编制了适合于一级边坡、二级边坡、三级边坡的滑移面搜索程序。

    针对放坡级数、坡高、坡率、重度、黏聚力、摩擦角等因素,进行敏感性分析,研究其对多级高边坡稳定性的影响,以便得到边坡稳定安全系数随各参数变化的规律。与此同时基于敏感性分析,修正多级高边坡稳定性计算方法。

    影响边坡稳定安全系数的因素不仅有坡形设计参数,包括放坡级数、坡高、坡率等,而且还受土体物理力学参数影响,如重度、黏聚力、摩擦角。考虑到各参数对稳定性的影响,修正多级边坡稳定性计算公式中三级边坡稳定安全系数的计算公式。

    设定均质边坡宽度为2 m,坡高均为36 m,坡率均为1:0.7,重度γ=15 kN/m3,黏聚力c=17 kPa,摩擦角为φ=23°。考虑单一因素变化、其余因素不变进行敏感性分析。图 3(a)~(e)分别是不同坡高、坡率、重度、黏聚力、内摩擦角下各边坡形式的稳定安全系数折线图。

    图  3  影响多级高边坡稳定性的因素与边坡稳定安全系数的关系
    Figure  3.  Relationship between factors affecting stability of multi- stage high slope and safety factor of slope stability

    图 3(a)中可以明显看出,对于一级边坡、二级边坡及三级边坡的形式,随着坡高的增加,其稳定安全系数都是随之减小并逐渐趋于平稳;在图 3(b)中,可以较为明显地发现各个边坡形式的坡率与稳定安全系数变化趋势比较接近线性分布。通过Matlab的拟合工具箱,进行曲线拟合,得到各边坡形式稳定安全系数与影响多级高边坡稳定性因素的函数。

    通过敏感性分析,对三级边坡的稳定安全系数函数进行研究。假设三级边坡的稳定安全系数函数为

    FS3=f31(x1)+f32(x2)+f33(x3)+f34(x4)+f35(x5)+β3 (6)

    根据敏感性分析研究拟合的函数,可以得到

    f31(x1)=2.1505×107x414.3479×105x31+3.4119×103x210.12884x1 ,f32(x2)=0.63505x421.4282x32+1.0175x22+0.23796x2 ,f33(x3)=6.3916×104x230.038092x3f34(x4)=1.3973×105x347.048×104x24+0.0061957x4 ,f35(x5)=1.3301×106x45+1.3466×104x354.8768×103x25+0.099053x5 ,β3=2.0185 } (7)

    式中x1为坡高(m);x2为坡率的倒数(即i=1:mx2=m);x3为重度(kN/m3);x4为黏聚力(kPa);x5为摩擦角(°)。

    采用该计算公式与未修正的多级高边坡稳定性系数计算方法进行对比计算,发现其相对误差基本处于10%以内。综上,可认为建立的多级黄土高边坡稳定性算法误差较小,可用于实际工程。

    为了验证所提出的多级黄土高边坡稳定性分析方法,采用MIDAS GTS有限元软件对框架预应力锚索+抗滑桩支护的多级高边坡整体稳定性、支护结构内力及支护后土体应力进行分析。

    甘肃省兰州市某高填方边坡支护工程位于甘肃省兰州市城关区。该边坡顶部标高自西向东由1580.0 m降低至1568.9 m,边坡底部为道路标高自西北向东南由1548.6 m降低至1533.0 m,边坡长度约585 m,高度约30~35 m。

    模型考虑边界对预应力锚索抗滑桩受力结果的影响,建立有限元网格模型尺寸为157 m(长)×70 m(高)×16 m(宽)。抗滑桩采用矩形截面,其中截面尺寸为2 m×2 m,桩长为24 m,嵌入土体12 m,桩间距为6 m。挡土板厚度为0.4 m,格构梁中的横梁及竖肋尺寸均为0.3 m×0.4 m,锚索自由段长度分别为7.5,10.5,12.5,15.5,15.5,15.5 m,锚固段长度都为7 m,锚索入射角均为15°。格构梁、抗滑桩、锚索视为弹性材料进行模拟,土层土体视为摩尔-库伦弹塑性材料,桩与土、锚索锚固段与土之间设置Goodman接触单元。土体、锚索、抗滑桩、格构梁具体材料参数分别见表 1,其中土体参数由地勘报告确定。

    表  1  材料物理力学参数
    Table  1.  Physical and mechanical parameters of materials
    编号 材料名称 γ/(kN·m-3) c/kPa φ/(°)
    1 黄土状粉土 15 17 23
    2 细砂 17 0 22
    3 卵石 23 0 35
    4 强风化砂岩 22 25 30
    5 中风化砂岩 22 25 30
    6 锚索 78
    7 25
    8 混凝土 25
    下载: 导出CSV 
    | 显示表格

    模型所加荷载为土体自重荷载且在坡顶存在20 kPa的荷载。其中,坡面为自由边界,两侧边界为左右边界约束X方向位移,前后边界约束Y方向位移,底部边界为底部边界约束3个方向的位移。模型的网格单元共有38121个,节点数共有17065个。图 4(a)~(c)分别为整体模型网格单元、框架预应力锚索单元、抗滑桩单元。

    图  4  多级高边坡有限元模型
    Figure  4.  Finite element model for multi-stage high slopes

    (1)整体稳定性分析

    图 5(a)为支护后滑移面移动情况,通过提出的滑移面搜索模型得到未支护时滑移面。如图 5(a)所示支护后的边坡滑移面已经明显后移,但是其滑移面形状已经不接近于圆滑形,其中支护后的滑移面与原滑移面相比,后移最小距离约为12 m,可见该支护方案的支护效果较为明显。该滑移面较大且不近似于圆弧形,这主要是由于抗滑桩嵌入地面的部分及锚索的锚索部分的影响。另外,经过模拟分析后得到整体边坡稳定安全系数为1.97,大于规范要求的1.35,说明该支护方案安全性较高。

    图  5  数值模拟云图
    Figure  5.  Numerical simulation cloud chart

    (2)支护结构内力分析

    图 5(b)为格构梁及抗滑桩的应力分布情况。图 5(c)为锚索应力分布示意图。在图 5(b)中可以看出结构整体受力情况良好,在格构梁及抗滑桩的交界处存在高应力集中情况,结合设计实际情况及模拟背景,发现该组合支护结构在高边坡支护中安全性较高。在图 5(c)中可以发现锚索受力主要集中于下部的锚索,且受力较大,故可认为在设计类似的边坡支护结构时,应适当增加下部锚索的强度,以增加边坡的安全性。

    (3)支护后土体应力分析

    图 5(d)为土体应力分布,图 5(e)为板前土体应力分布细节图,图 5(f)为桩前土体应力分布细节图。通过图 5(e)5(f)可以发现板前应力分布情况明显好于桩前应力分布。为了更加清楚地说明,观察支护结构前土体应力分布情况,在图 5(f)中可以明显发现桩前的土体相较于板前土体及其他土体的应力分布情况更加危险,故在工程中可以考虑对桩前的部分土体采取加固措施,以保证支护工程更加安全。

    (1)基于瑞典条分法和敏感性分析,建立了考虑主要设计参数影响的多级边坡稳定性计算方法,包括多级边坡稳定性安全系数计算公式和滑移面搜索模型,该方法计算精度高、所得滑面位置较为客观真实,可供类似工程设计使用。

    (2)通过敏感性分析,认为坡高、坡率是设计放坡级数的首要考虑因素,土体的物理力学参数(重度、黏聚力、摩擦角)作为参考因素。重度、黏聚力、摩擦角这3个因素,对边坡稳定性存在一定的共同性规律:随着重度的降低、黏聚力的提升、摩擦角的增大,边坡稳定性随之提升。

    (3)通过Midas GTS有限元模拟发现,采用多级边坡稳定性算法得到的滑移面与模拟的滑移面较吻合,该算法较准确。而且支护后边坡的滑移面发生了十分明显的后移,其中后移最小距离约为12 m;支护后边坡的滑移面也不再近似于圆弧形,其形状的改变与支护结构的形式有较大关系。

    (4)根据支护结构、土体应力分布情况,发现在抗滑桩与框架预应力锚索的连接处及抗滑桩前部土体的应力较高,下排的锚索轴向拉力较大,类似工程设计时应重点加强。

  • 图  1   渗沥液中污染物分子扩散–对流–吸附运移穿过GMB/GCL/SL复合衬垫的模型示意图[8]

    Figure  1.   Mathematical model for pollutant migration through composite liner[8]

    图  2   渗沥液通过土工膜孔洞发生渗漏示意图

    Figure  2.   Process of leakage of leachate via hole on geomembrane

    图  3   GMB/GCL/SL衬垫击穿曲线

    Figure  3.   Breakthrough curves of GMB/GCL/SL

    图  4   配置各类型土工膜的复合衬垫的击穿曲线

    Figure  4.   Breakthrough curves of GMB/GCL/SL with different types of GMB

    图  5   对流作用的影响

    Figure  5.   Effects of advection

    图  6   分子扩散作用的影响

    Figure  6.   Effects of molecular diffusion

    图  7   吸附作用的影响

    Figure  7.   Effects of molecular diffusion

    表  1   GMB/GCL/SL复合衬垫材料特性和服役环境参数

    Table  1   Parameters fo GMB/GCL/SL composite liner system

    参数 GMB GCL SL
    厚度L/mm 0.0015[8] 0.01[8] 0.30[44]
    孔隙度n 0.70[8] 0.40[45]
    干密度ρd/(g·cm-3) 0.79[8] 1.62[8, 45]
    扩散系数D/(10-10 m2·s-1) 0.003[8] 3.0[8] 8.0[8]
    分配系数Kg 100[8]
    分布系数Kd/(mL·g-1) 8.7[46] 1.60[47]
    渗透系数k/(10-9m·s-1) 0.01[44] 100[8]
    渗沥液水头高度hw/m 1
    土工膜上孔洞分布密度mh 2.5[8]
    褶皱长度Lw/m 500[8]
    界面穿透系数θ/(10-10 m2·s-1) 2[8]
    甲苯最大允许浓度Ca/(mg·L-1) 0.7[8]
    渗沥液中甲苯浓度C0/(mg·L-1) 5[8]
    衬垫中甲苯背景浓度Cini/(mg·L-1) 0[8]
    下载: 导出CSV
  • [1]

    BARROSO M, TOUZE-FOLTZ N, VON MAUBEUGE K, et al. Laboratory investigation of flow rate through composite liners consisting of a geomembrane, a GCL and a soil liner[J]. Geotextiles and Geomembranes, 2006, 24(3): 139–155. doi: 10.1016/j.geotexmem.2006.01.003

    [2]

    BOUAZZA A, BOWDERS J. Geosynthetic Clay Liners for Waste Containment Facilities[M]. Boca Raton: CRC Press, 2009.

    [3]

    VARANK G, DEMIR A, YETILMEZSOY K, et al. Estimation of transport parameters of phenolic compounds and inorganic contaminants through composite landfill liners using one-dimensional mass transport model[J]. Waste Management, 2011, 31(11): 2263–2274. doi: 10.1016/j.wasman.2011.06.005

    [4]

    EL-ZEIN A, MCCARROLL I, TOUZE-FOLTZ N. Three-dimensional finite-element analyses of seepage and contaminant transport through composite geosynthetics clay liners with multiple defects[J]. Geotextiles and Geomembranes, 2012, 33: 34–42. doi: 10.1016/j.geotexmem.2012.02.004

    [5]

    PARK M G, EDIL T B, BENSON C H. Modeling volatile organic compound transport in composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 641–657. doi: 10.1061/(ASCE)GT.1943-5606.0000630

    [6]

    HOOR A, ROWE R K. Potential for desiccation of geosynthetic clay liners used in barrier systems[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(10): 1648–1664. doi: 10.1061/(ASCE)GT.1943-5606.0000899

    [7]

    GUAN C, XIE H J, WANG Y Z, et al. An analytical model for solute transport through a GCL-based two-layered liner considering biodegradation[J]. Science of the Total Environment, 2014, 466/467: 221–231. doi: 10.1016/j.scitotenv.2013.07.028

    [8]

    FENG S J, PENG M Q, CHEN H X, et al. Fully transient analytical solution for degradable organic contaminant transport through GMB/GCL/AL composite liners[J]. Geotextiles and Geomembranes, 2019, 47(3): 282–294. doi: 10.1016/j.geotexmem.2019.01.017

    [9]

    KJELDSEN P, BARLAZ M A, ROOKER A P, et al. Present and long-term composition of MSW landfill leachate: a review[J]. Critical Reviews in Environmental Science and Technology, 2002, 32(4): 297–336. doi: 10.1080/10643380290813462

    [10]

    EDIL T B. A review of aqueous-phase VOC transport in modern landfill liners[J]. Waste Management, 2003, 23(7): 561–571. doi: 10.1016/S0956-053X(03)00101-6

    [11]

    ISLAM M Z, ROWE R K. Effect of geomembrane ageing on the diffusion of VOCS through HDPE geomembranes[C]// The First Pan American Geosynthetics Conference & Exhibition, 2008(March): 459–467.

    [12]

    PARK J K, NIBRAS M. Mass flux of organic chemicals through polyethylene geomembranes[J]. Water Environment Research, 1993, 65(3): 227–237. doi: 10.2175/WER.65.3.6

    [13]

    PRASAD T V, BROWN K W, THOMAS J C. Diffusion coefficients of organics in high density polyethylene (HDPE)[J]. Waste Management & Research, 1994, 12(1): 61–71.

    [14]

    ROWE R K, HRAPOVIC L, KOSARIC N. Diffusion of chloride and dichloromethane through an HDPE geomembrane[J]. Geosynthetics International, 1995, 2(3): 507–536. doi: 10.1680/gein.2.0021

    [15]

    SANGAM H P, ROWE R K. Migration of dilute aqueous organic pollutants through HDPE geomembranes[J]. Geotextiles and Geomembranes, 2001, 19(6): 329–357. doi: 10.1016/S0266-1144(01)00013-9

    [16]

    TOUZE-FOLTZ N, ROSIN-PAUMIER S, MAZÉAS L, et al. Diffusion of volatile organic compounds through an HDPE geomembrane[C]// Geo-Frontiers Congress 2011, 2011, Dallas.

    [17]

    MCWATTERS R S, ROWE R K. Permeation of volatile organic compounds through EVOH thin film membranes and coextruded LLDPE/EVOH/LLDPE geomembranes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 04014091. doi: 10.1061/(ASCE)GT.1943-5606.0001209

    [18]

    ROWE R K, SAHELI P T, RUTTER A. Partitioning and diffusion of PBDEs through an HDPE geomembrane[J]. Waste Management (New York), 2016, 55: 191–203. doi: 10.1016/j.wasman.2016.05.006

    [19]

    ROWE R K, JONES D D, RUTTER A. Polychlorinated biphenyl diffusion through HDPE geomembrane[J]. Geosynthetics International, 2016, 23(6): 408–421. doi: 10.1680/jgein.16.00006

    [20] 谢海建, 楼章华, 陈云敏, 等. 污染物通过GCL/AL防渗层的对流-弥散解析解[J]. 科学通报, 2010, 55(21): 2148–2155. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201021014.htm

    XIE Hai-jian, LOU Zhang-hua, CHEN Yun-min, et al. An analytical solution to contaminant advection and dispersion through a GCL/AL liner system[J]. Chinese Science Bulletin, 2010, 55(21): 2153–2163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201021014.htm

    [21] 谢海建, 陈云敏, 楼章华. 污染物通过有缺陷膜复合衬垫的一维运移解析解[J]. 中国科学: 技术科学, 2010, 40 (5): 486–495. doi: 10.3969/j.issn.0253-2778.2010.05.0008

    XIE Hai-jian, CHEN Yun-min, LOU Zhang-hua. An analytical solution to contaminant transport through composite liners with geomembrane defects[J]. Scientia Sinica Technologica, 2010, 40(5): 486–495. (in Chinese) doi: 10.3969/j.issn.0253-2778.2010.05.0008

    [22]

    LI Y C, CLEALL P J. Analytical solutions for advective-dispersive solute transport in double-layered finite porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(4): 438–460. doi: 10.1002/nag.903

    [23] 张文杰, 黄依艺, 张改革. 填埋场污染物在有限厚度土层中一维对流–扩散–吸附解析解[J]. 岩土工程学报, 2013, 35(7): 1197–1201. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15098.shtml

    ZHANG Wen-jie, HUANG Yi-yi, ZHANG Gai-ge. Analytical solution for 1D advection-diffusion-adsorption transport of landfill contaminants through a soil layer with finite thickness[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1197–1201. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15098.shtml

    [24]

    CHEN Y M, WANG Y Z, XIE H J. Breakthrough time-based design of landfill composite liners[J]. Geotextiles and Geomembranes, 2015, 43(2): 196–206. doi: 10.1016/j.geotexmem.2015.01.005

    [25]

    XIE H J, THOMAS H R, CHEN Y M, et al. Diffusion of organic contaminants in triple-layer composite liners: an analytical modeling approach[J]. Acta Geotechnica, 2015, 10(2): 255–262. doi: 10.1007/s11440-013-0262-3

    [26]

    FENG S J, PENG M Q, CHEN Z L, et al. Transient analytical solution for one-dimensional transport of organic contaminants through GM/GCL/SL composite liner[J]. Science of the Total Environment, 2019, 650: 479–492. doi: 10.1016/j.scitotenv.2018.08.413

    [27]

    PENG M Q, FENG S J, CHEN H X, et al. Analytical model for organic contaminant transport through GMB/CCL composite liner with finite thickness considering adsorption, diffusion and thermodiffusion[J]. Waste Management, 2021, 120: 448–458. doi: 10.1016/j.wasman.2020.10.004

    [28]

    PENG M Q, FENG S J, CHEN H X, et al. An analytical solution for organic pollutant diffusion in a triple-layer composite liner considering the coupling influence of thermal diffusion[J]. Computers and Geotechnics, 2021, 137: 104283. doi: 10.1016/j.compgeo.2021.104283

    [29]

    CHEN Y M, XIE H J, KE H, et al. An analytical solution for one-dimensional contaminant diffusion through multi-layered system and its applications[J]. Environmental Geology, 2009, 58(5): 1083–1094. doi: 10.1007/s00254-008-1587-3

    [30]

    BENSON C H, DANIEL D E, BOUTWELL G P. Field performance of compacted clay liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(5): 390–403. doi: 10.1061/(ASCE)1090-0241(1999)125:5(390)

    [31]

    STARK T D. Evaluation of a four-component composite landfill liner system[J]. Environmental Geotechnics, 2017, 4(4): 257–273. doi: 10.1680/jenge.14.00033

    [32]

    ROWE R K. Geosynthetics and the minimization of contaminant migration through barrier systems beneath solid waste[C]//Proceedings of the 6th International Conference on Geosynthetics, 1998, Atlanta.

    [33]

    LEO A, HANSCH C, ELKINS D. Partition coefficients and their uses[J]. Chemical Reviews, 1971, 71(6): 525–616. doi: 10.1021/cr60274a001

    [34]

    SANGAM H P, ROWE R K. Effect of surface fluorination on diffusion through a high density polyethylene geomembrane[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(6): 694–704. doi: 10.1061/(ASCE)1090-0241(2005)131:6(694)

    [35]

    FOOSE G J. Transit-time design for diffusion through composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(7): 590–601. doi: 10.1061/(ASCE)1090-0241(2002)128:7(590)

    [36]

    ROWE R K, CHAPPEL M J, BRACHMAN R W I, et al. Field study of wrinkles in a geomembrane at a composite liner test site[J]. Canadian Geotechnical Journal, 2012, 49(10): 1196–1211. doi: 10.1139/t2012-083

    [37]

    ROWE R K, BRACHMAN R W I. Assessment of equivalence of composite liners[J]. Geosynthetics International, 2004, 11(4): 273–286. doi: 10.1680/gein.2004.11.4.273

    [38]

    FOOSE G J, BENSON C H, EDIL T B. Equivalency of composite geosynthetic clay liners as a barrier to volatile organic compounds[C]//Proceedings of Geosynthetics. 1999, Boston.

    [39]

    FOOSE G J, BENSON C H, EDIL T B. Analytical equations for predicting concentration and mass flux from composite liners[J]. Geosynthetics International, 2001, 8(6): 551–575. doi: 10.1680/gein.8.0206

    [40]

    XIE H J, JIANG Y S, ZHANG C H, et al. Steady-state analytical models for performance assessment of landfill composite liners[J]. Environmental Science and Pollution Research, 2015, 22(16): 12198–12214. doi: 10.1007/s11356-015-4200-9

    [41]

    ACAR Y B, HAIDER L. Transport of low-concentration contaminants in saturated earthen barriers[J]. Journal of Geotechnical Engineering, 1990, 116(7): 1031–1052. doi: 10.1061/(ASCE)0733-9410(1990)116:7(1031)

    [42]

    CHAPPEL M J, ROWE R K, BRACHMAN R W I, et al. A comparison of geomembrane wrinkles for nine field cases[J]. Geosynthetics International, 2012, 19(6): 453–469. doi: 10.1680/gein.12.00030

    [43]

    ROWE R K. Short- and long-term leakage through composite liners[J]. Can Geotech J, 2012, 49(2): 141–169. doi: 10.1139/t11-092

    [44] 生活垃圾卫生填埋处理技术规范: GB 50869—2013[S]. 2014.

    Technical Code for Municipal Solid Waste Sanitary Landfill: GB 50869—2013[S]. 2014. (in Chinese)

    [45]

    XIE H J, LOU Z H, CHEN Y M, et al. An analytical solution to contaminant advection and dispersion through a GCL/AL liner system[J]. Chinese Science Bulletin, 2011, 56(8): 811–818. doi: 10.1007/s11434-010-4039-x

    [46]

    ROWE R K. Long-term performance of contaminant barrier systems[J]. Géotechnique, 2005, 55(9): 631–678. doi: 10.1680/geot.2005.55.9.631

    [47]

    LAKE C B, ROWE R K. A comparative assessment of volatile organic compound (VOC) sorption to various types of potential GCL bentonites[J]. Geotextiles and Geomembranes, 2005, 23(4): 323–347. doi: 10.1016/j.geotexmem.2005.01.001

    [48]

    XIE H J, JIANG Y S, ZHANG C H, et al. An analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL, and a soil liner[J]. Environmental Science and Pollution Research International, 2015, 22(4): 2824–2836. doi: 10.1007/s11356-014-3565-5

    [49]

    GIROUD J P, BONAPARTE R. Geosynthetics in liquid-containing structures[M]// Geotechnical and Geoenvironmental Engineering Handbook. Boston: Springer, 2001.

    [50] 徐亚, 能昌信, 刘玉强, 等. 垃圾填埋场HDPE膜漏洞密度及其影响因素的统计分析[J]. 环境工程学报, 2015, 9(9): 4558–4564. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm

    XU Ya, NAI Chang-xin, LIU Yu-qiang, et al. Statistical analysis on density of accidental-hole in landfill liner system[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4558–4564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm

图(7)  /  表(1)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  26
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-04-30

目录

/

返回文章
返回