• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Shi-jin, PENG Ming-qing, CHEN Zhang-long, CHEN Hong-xin. One-dimensional transport of transient diffusion-advection of organic contaminant through composite liners[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 799-809. DOI: 10.11779/CJGE202205002
Citation: FENG Shi-jin, PENG Ming-qing, CHEN Zhang-long, CHEN Hong-xin. One-dimensional transport of transient diffusion-advection of organic contaminant through composite liners[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 799-809. DOI: 10.11779/CJGE202205002

One-dimensional transport of transient diffusion-advection of organic contaminant through composite liners

More Information
  • Received Date: May 17, 2021
  • Available Online: September 22, 2022
  • Using the fully transient diffusion-advection transport model for transport of organic contaminant in GMB/GCL/SL composite liner, a series of parameter sensitivity studies are conducted to analyze the influences of several important parameters on the barrier performance of the composite liner. The results show that: (1) When the leachate head is 10, 5, 3 and 0.3 m, the breakthrough time obtained by the full advection model is higher by 233%, 151%, 111% and 24% than that obtained by the local advection model, respectively. (2) It is appropriate to use hw as an alternative for hd for simplification. (3) The breakthrough time of the composite liner with f-HDPE geomembrane is 36%, 33% and 22% higher than that with PVC, LLDPE and HDPE, respectively. (4) When the leachate head is 10, 5 and 1 m, the breakthrough time will be overestimated due to ignoring the effects of advection by 68%, 34% and 6%, respectively. (5) When the frequency of holes increases from 2.5 to 50, 30, 10 and 5 ha-1, the breakthrough time decreases by 54%, 41%, 16% and 6%, respectively. (6) The effective diffusion coefficient of SL decreases by 90%, and the breakthrough time of the liner increases by 2 ~ 6 times. The adsorption coefficient of SL increases from 1 mL/g to 5, 15, 30 and 50 mL/g, and the breakthrough time increases by 311%, 1086%, 2249% and 3798%, respectively. The above research results may provide some reference and suggestions for the use and improvement of the liner in practice.
  • [1]
    BARROSO M, TOUZE-FOLTZ N, VON MAUBEUGE K, et al. Laboratory investigation of flow rate through composite liners consisting of a geomembrane, a GCL and a soil liner[J]. Geotextiles and Geomembranes, 2006, 24(3): 139–155. doi: 10.1016/j.geotexmem.2006.01.003
    [2]
    BOUAZZA A, BOWDERS J. Geosynthetic Clay Liners for Waste Containment Facilities[M]. Boca Raton: CRC Press, 2009.
    [3]
    VARANK G, DEMIR A, YETILMEZSOY K, et al. Estimation of transport parameters of phenolic compounds and inorganic contaminants through composite landfill liners using one-dimensional mass transport model[J]. Waste Management, 2011, 31(11): 2263–2274. doi: 10.1016/j.wasman.2011.06.005
    [4]
    EL-ZEIN A, MCCARROLL I, TOUZE-FOLTZ N. Three-dimensional finite-element analyses of seepage and contaminant transport through composite geosynthetics clay liners with multiple defects[J]. Geotextiles and Geomembranes, 2012, 33: 34–42. doi: 10.1016/j.geotexmem.2012.02.004
    [5]
    PARK M G, EDIL T B, BENSON C H. Modeling volatile organic compound transport in composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 641–657. doi: 10.1061/(ASCE)GT.1943-5606.0000630
    [6]
    HOOR A, ROWE R K. Potential for desiccation of geosynthetic clay liners used in barrier systems[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(10): 1648–1664. doi: 10.1061/(ASCE)GT.1943-5606.0000899
    [7]
    GUAN C, XIE H J, WANG Y Z, et al. An analytical model for solute transport through a GCL-based two-layered liner considering biodegradation[J]. Science of the Total Environment, 2014, 466/467: 221–231. doi: 10.1016/j.scitotenv.2013.07.028
    [8]
    FENG S J, PENG M Q, CHEN H X, et al. Fully transient analytical solution for degradable organic contaminant transport through GMB/GCL/AL composite liners[J]. Geotextiles and Geomembranes, 2019, 47(3): 282–294. doi: 10.1016/j.geotexmem.2019.01.017
    [9]
    KJELDSEN P, BARLAZ M A, ROOKER A P, et al. Present and long-term composition of MSW landfill leachate: a review[J]. Critical Reviews in Environmental Science and Technology, 2002, 32(4): 297–336. doi: 10.1080/10643380290813462
    [10]
    EDIL T B. A review of aqueous-phase VOC transport in modern landfill liners[J]. Waste Management, 2003, 23(7): 561–571. doi: 10.1016/S0956-053X(03)00101-6
    [11]
    ISLAM M Z, ROWE R K. Effect of geomembrane ageing on the diffusion of VOCS through HDPE geomembranes[C]// The First Pan American Geosynthetics Conference & Exhibition, 2008(March): 459–467.
    [12]
    PARK J K, NIBRAS M. Mass flux of organic chemicals through polyethylene geomembranes[J]. Water Environment Research, 1993, 65(3): 227–237. doi: 10.2175/WER.65.3.6
    [13]
    PRASAD T V, BROWN K W, THOMAS J C. Diffusion coefficients of organics in high density polyethylene (HDPE)[J]. Waste Management & Research, 1994, 12(1): 61–71.
    [14]
    ROWE R K, HRAPOVIC L, KOSARIC N. Diffusion of chloride and dichloromethane through an HDPE geomembrane[J]. Geosynthetics International, 1995, 2(3): 507–536. doi: 10.1680/gein.2.0021
    [15]
    SANGAM H P, ROWE R K. Migration of dilute aqueous organic pollutants through HDPE geomembranes[J]. Geotextiles and Geomembranes, 2001, 19(6): 329–357. doi: 10.1016/S0266-1144(01)00013-9
    [16]
    TOUZE-FOLTZ N, ROSIN-PAUMIER S, MAZÉAS L, et al. Diffusion of volatile organic compounds through an HDPE geomembrane[C]// Geo-Frontiers Congress 2011, 2011, Dallas.
    [17]
    MCWATTERS R S, ROWE R K. Permeation of volatile organic compounds through EVOH thin film membranes and coextruded LLDPE/EVOH/LLDPE geomembranes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 04014091. doi: 10.1061/(ASCE)GT.1943-5606.0001209
    [18]
    ROWE R K, SAHELI P T, RUTTER A. Partitioning and diffusion of PBDEs through an HDPE geomembrane[J]. Waste Management (New York), 2016, 55: 191–203. doi: 10.1016/j.wasman.2016.05.006
    [19]
    ROWE R K, JONES D D, RUTTER A. Polychlorinated biphenyl diffusion through HDPE geomembrane[J]. Geosynthetics International, 2016, 23(6): 408–421. doi: 10.1680/jgein.16.00006
    [20]
    谢海建, 楼章华, 陈云敏, 等. 污染物通过GCL/AL防渗层的对流-弥散解析解[J]. 科学通报, 2010, 55(21): 2148–2155. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201021014.htm

    XIE Hai-jian, LOU Zhang-hua, CHEN Yun-min, et al. An analytical solution to contaminant advection and dispersion through a GCL/AL liner system[J]. Chinese Science Bulletin, 2010, 55(21): 2153–2163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201021014.htm
    [21]
    谢海建, 陈云敏, 楼章华. 污染物通过有缺陷膜复合衬垫的一维运移解析解[J]. 中国科学: 技术科学, 2010, 40 (5): 486–495. doi: 10.3969/j.issn.0253-2778.2010.05.0008

    XIE Hai-jian, CHEN Yun-min, LOU Zhang-hua. An analytical solution to contaminant transport through composite liners with geomembrane defects[J]. Scientia Sinica Technologica, 2010, 40(5): 486–495. (in Chinese) doi: 10.3969/j.issn.0253-2778.2010.05.0008
    [22]
    LI Y C, CLEALL P J. Analytical solutions for advective-dispersive solute transport in double-layered finite porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(4): 438–460. doi: 10.1002/nag.903
    [23]
    张文杰, 黄依艺, 张改革. 填埋场污染物在有限厚度土层中一维对流–扩散–吸附解析解[J]. 岩土工程学报, 2013, 35(7): 1197–1201. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15098.shtml

    ZHANG Wen-jie, HUANG Yi-yi, ZHANG Gai-ge. Analytical solution for 1D advection-diffusion-adsorption transport of landfill contaminants through a soil layer with finite thickness[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1197–1201. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15098.shtml
    [24]
    CHEN Y M, WANG Y Z, XIE H J. Breakthrough time-based design of landfill composite liners[J]. Geotextiles and Geomembranes, 2015, 43(2): 196–206. doi: 10.1016/j.geotexmem.2015.01.005
    [25]
    XIE H J, THOMAS H R, CHEN Y M, et al. Diffusion of organic contaminants in triple-layer composite liners: an analytical modeling approach[J]. Acta Geotechnica, 2015, 10(2): 255–262. doi: 10.1007/s11440-013-0262-3
    [26]
    FENG S J, PENG M Q, CHEN Z L, et al. Transient analytical solution for one-dimensional transport of organic contaminants through GM/GCL/SL composite liner[J]. Science of the Total Environment, 2019, 650: 479–492. doi: 10.1016/j.scitotenv.2018.08.413
    [27]
    PENG M Q, FENG S J, CHEN H X, et al. Analytical model for organic contaminant transport through GMB/CCL composite liner with finite thickness considering adsorption, diffusion and thermodiffusion[J]. Waste Management, 2021, 120: 448–458. doi: 10.1016/j.wasman.2020.10.004
    [28]
    PENG M Q, FENG S J, CHEN H X, et al. An analytical solution for organic pollutant diffusion in a triple-layer composite liner considering the coupling influence of thermal diffusion[J]. Computers and Geotechnics, 2021, 137: 104283. doi: 10.1016/j.compgeo.2021.104283
    [29]
    CHEN Y M, XIE H J, KE H, et al. An analytical solution for one-dimensional contaminant diffusion through multi-layered system and its applications[J]. Environmental Geology, 2009, 58(5): 1083–1094. doi: 10.1007/s00254-008-1587-3
    [30]
    BENSON C H, DANIEL D E, BOUTWELL G P. Field performance of compacted clay liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(5): 390–403. doi: 10.1061/(ASCE)1090-0241(1999)125:5(390)
    [31]
    STARK T D. Evaluation of a four-component composite landfill liner system[J]. Environmental Geotechnics, 2017, 4(4): 257–273. doi: 10.1680/jenge.14.00033
    [32]
    ROWE R K. Geosynthetics and the minimization of contaminant migration through barrier systems beneath solid waste[C]//Proceedings of the 6th International Conference on Geosynthetics, 1998, Atlanta.
    [33]
    LEO A, HANSCH C, ELKINS D. Partition coefficients and their uses[J]. Chemical Reviews, 1971, 71(6): 525–616. doi: 10.1021/cr60274a001
    [34]
    SANGAM H P, ROWE R K. Effect of surface fluorination on diffusion through a high density polyethylene geomembrane[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(6): 694–704. doi: 10.1061/(ASCE)1090-0241(2005)131:6(694)
    [35]
    FOOSE G J. Transit-time design for diffusion through composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(7): 590–601. doi: 10.1061/(ASCE)1090-0241(2002)128:7(590)
    [36]
    ROWE R K, CHAPPEL M J, BRACHMAN R W I, et al. Field study of wrinkles in a geomembrane at a composite liner test site[J]. Canadian Geotechnical Journal, 2012, 49(10): 1196–1211. doi: 10.1139/t2012-083
    [37]
    ROWE R K, BRACHMAN R W I. Assessment of equivalence of composite liners[J]. Geosynthetics International, 2004, 11(4): 273–286. doi: 10.1680/gein.2004.11.4.273
    [38]
    FOOSE G J, BENSON C H, EDIL T B. Equivalency of composite geosynthetic clay liners as a barrier to volatile organic compounds[C]//Proceedings of Geosynthetics. 1999, Boston.
    [39]
    FOOSE G J, BENSON C H, EDIL T B. Analytical equations for predicting concentration and mass flux from composite liners[J]. Geosynthetics International, 2001, 8(6): 551–575. doi: 10.1680/gein.8.0206
    [40]
    XIE H J, JIANG Y S, ZHANG C H, et al. Steady-state analytical models for performance assessment of landfill composite liners[J]. Environmental Science and Pollution Research, 2015, 22(16): 12198–12214. doi: 10.1007/s11356-015-4200-9
    [41]
    ACAR Y B, HAIDER L. Transport of low-concentration contaminants in saturated earthen barriers[J]. Journal of Geotechnical Engineering, 1990, 116(7): 1031–1052. doi: 10.1061/(ASCE)0733-9410(1990)116:7(1031)
    [42]
    CHAPPEL M J, ROWE R K, BRACHMAN R W I, et al. A comparison of geomembrane wrinkles for nine field cases[J]. Geosynthetics International, 2012, 19(6): 453–469. doi: 10.1680/gein.12.00030
    [43]
    ROWE R K. Short- and long-term leakage through composite liners[J]. Can Geotech J, 2012, 49(2): 141–169. doi: 10.1139/t11-092
    [44]
    生活垃圾卫生填埋处理技术规范: GB 50869—2013[S]. 2014.

    Technical Code for Municipal Solid Waste Sanitary Landfill: GB 50869—2013[S]. 2014. (in Chinese)
    [45]
    XIE H J, LOU Z H, CHEN Y M, et al. An analytical solution to contaminant advection and dispersion through a GCL/AL liner system[J]. Chinese Science Bulletin, 2011, 56(8): 811–818. doi: 10.1007/s11434-010-4039-x
    [46]
    ROWE R K. Long-term performance of contaminant barrier systems[J]. Géotechnique, 2005, 55(9): 631–678. doi: 10.1680/geot.2005.55.9.631
    [47]
    LAKE C B, ROWE R K. A comparative assessment of volatile organic compound (VOC) sorption to various types of potential GCL bentonites[J]. Geotextiles and Geomembranes, 2005, 23(4): 323–347. doi: 10.1016/j.geotexmem.2005.01.001
    [48]
    XIE H J, JIANG Y S, ZHANG C H, et al. An analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL, and a soil liner[J]. Environmental Science and Pollution Research International, 2015, 22(4): 2824–2836. doi: 10.1007/s11356-014-3565-5
    [49]
    GIROUD J P, BONAPARTE R. Geosynthetics in liquid-containing structures[M]// Geotechnical and Geoenvironmental Engineering Handbook. Boston: Springer, 2001.
    [50]
    徐亚, 能昌信, 刘玉强, 等. 垃圾填埋场HDPE膜漏洞密度及其影响因素的统计分析[J]. 环境工程学报, 2015, 9(9): 4558–4564. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm

    XU Ya, NAI Chang-xin, LIU Yu-qiang, et al. Statistical analysis on density of accidental-hole in landfill liner system[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4558–4564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm
  • Cited by

    Periodical cited type(6)

    1. 卢斌,郑雪玉,吴修锋,谢兴华,李艳伟,王照英. 特高堆石坝砾石土心墙非均质缺陷对渗流场影响分析. 水电与抽水蓄能. 2023(03): 22-25+39 .
    2. 王定顺,赵文辉,石旭东,张金瑞,杨有海,张延杰. 高压旋喷桩施工对既有铁路路基变形影响研究. 铁道科学与工程学报. 2023(07): 2500-2508 .
    3. 黄诗渊,王俊杰,王爱国,吉恩跃,郭万里,靳松洋. 压剪作用下压实黏土断裂破坏机理及断裂准则. 岩土工程学报. 2021(03): 492-501 . 本站查看
    4. 崔博,邓博麒,刘明辉,余佳,王晓玲. 基于不规则颗粒离散元的砾石土三轴数值模拟. 水力发电学报. 2020(04): 73-87 .
    5. 马少坤,唐晓菲,李少龙,张捷,刘莹,段智博. 非饱和砾石土土水特征曲线研究. 公路. 2020(05): 34-42 .
    6. 周怡,彭振斌,何忠明,尹泉. 砾石土防渗料压实特性. 中南大学学报(自然科学版). 2020(08): 2061-2068 .

    Other cited types(6)

Catalog

    Article views (225) PDF downloads (180) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return