Analytical model for one-dimensional transport of organic contaminants in multi-layered media considering advection-diffusion-adsorption-degradation
-
摘要: 针对成层介质中有机污染物一维运移问题,建立了考虑对流-扩散-吸附-降解时成层介质中有机污染物的一维运移模型,并采用分离变量法获得了该模型解析解。通过将一维运移解析模型的计算结果分别与现有解析解的计算结果和数值方法的计算结果进行对比分析,对所建模型正确性进行了验证。基于所建解析模型,以4层土体为例,对有机污染物一维运移过程展开了参数分析。结果表明,渗滤液水头hw引起的对流作用会加快运移过程,增大底部通量。与hw为0.0 m时相比,hw为2.0 m下的底部通量可增大一个数量级以上;降解作用会降低质量浓度和底部通量。当运移过程达到稳态时,与降解半衰期t1/2趋近于无穷大时相比,t1/2为100a下的底部通量可降低约45%;Robin边界常数α的增大会使得底部范围内的质量浓度降低,同时也会使得底部通量增大,但不同α下的底部通量在同一数量级内变化。
-
关键词:
- 有机污染物 /
- 成层介质 /
- 对流-扩散-吸附-降解 /
- 一维运移 /
- 解析解
Abstract: For the problem of one-dimensional transport of organic contaminants in multi-layered media, a one-dimensional organic contaminants transport model in multi-layered media considering advection-diffusion-adsorption-degradation is established, and the analytical solution for the model is obtained by using the separation variable method. The correctness of the established one-dimensional transport analytical model is verified by comparing the calculated results with those of the existing analytical solution and the numerical method. Based on the established analytical model, the one-dimensional transport process of organic contaminants in a four-layer soil is taken as an example to conduct the parameter analysis. The results show that the advection caused by the leachate head hw will accelerate the transport process and increase the bottom flux. Compared with that at hw of 0.0 m, the bottom flux at 2.0 m can be increased by more than one order of magnitude. The degradation will reduce the concentration and bottom flux. When the transport process reaches the steady state, the bottom flux at degradation half-life t1/2 of 100 a can be reduced by about 45% compared with that at t1/2 of infinity. The increase of the Robin boundary constant α will reduce the concentration in the bottom region, and also will increase the bottom flux, which varies in the same order of magnitude under different α. -
-
图 2 本文所建解析模型与陈云敏等[24]解析解的对比
Figure 2. Comparison between proposed analytical model and analytical solution proposed by Chen et al.
表 1 4层土体的物理力学参数及相关的环境参数
Table 1 Physical-mechanics parameters of four-layer soils and environment-related parameters
土层编号 渗透系数kv/(10-9m·s-1) 有效扩散系数De/(10-10m2·s-1) 纵向弥散度αL/m 降解半衰期t1/2/a 吸附阻滞因子Rd 孔隙率n 厚度l/m 渗滤液水头hw/m 质量浓度C0/(mg·L-1) Robin边界常数α/(m-1) 土层1 1.0 4.0 0.02 150 6.6 0.35 0.50 1.0 1.0 1.0 土层2 0.2 2.0 0.01 100 9.8 0.30 0.50 1.0 1.0 1.0 土层3 20.0 6.0 0.04 200 4.2 0.40 0.25 1.0 1.0 1.0 土层4 100.0 8.0 0.05 250 2.8 0.45 0.75 1.0 1.0 1.0 -
[1] 陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46. doi: 10.11779/CJGE201401001 CHEN Yunmin. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. (in Chinese)) doi: 10.11779/CJGE201401001
[2] SHACKELFORD C D. The ISSMGE Kerry Rowe Lecture: the role of diffusion in environmental geotechnics[J]. Canadian Geotechnical Journal, 2014, 51(11): 1219-1242. doi: 10.1139/cgj-2013-0277
[3] PU H F, QIU J W, ZHANG R J, et al. Assessment of consolidation-induced VOC transport for a GML/GCL/CCL composite liner system[J]. Geotextiles and Geomembranes, 2018, 46(4): 455-469. doi: 10.1016/j.geotexmem.2018.04.002
[4] TOUZE-FOLTZ N, XIE H J, STOLTZ G. Performance issues of barrier systems for landfills: a review[J]. Geotextiles and Geomembranes, 2021, 49(2): 475-488. doi: 10.1016/j.geotexmem.2020.10.016
[5] 谢海建, 詹良通, 陈云敏, 等. 我国四类衬垫系统防污性能的比较分析[J]. 土木工程学报, 2011, 44(7): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107020.htm XIE Haijian, ZHAN Liangtong, CHEN Yunmin, et al. Comparison of the performance of four types of liner systems in China[J]. China Civil Engineering Journal, 2011, 44(7): 133-141. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107020.htm
[6] PENG M Q, FENG S J, CHEN H X, et al. Analytical model for organic contaminant transport through GMB/CCL composite liner with finite thickness considering adsorption, diffusion and thermodiffusion[J]. Waste Manag, 2021, 120: 448-458. doi: 10.1016/j.wasman.2020.10.004
[7] 吴珣, 施建勇, 何俊. 有机污染物在完好三层复合衬垫中的扩散分析[J]. 岩土工程学报, 2015, 37(增刊1): 99-104. doi: 10.11779/CJGE2015S1020 WU Xun, SHI Jianyong, HE Jun. Diffusion of organic contaminant through intact triple-layer liner[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 99-104. (in Chinese)) doi: 10.11779/CJGE2015S1020
[8] 陈云敏, 谢海建, 柯瀚, 等. 挥发性有机化合物在复合衬里中的一维扩散解[J]. 岩土工程学报, 2006, 28(9): 1076-1080. doi: 10.3321/j.issn:1000-4548.2006.09.005 CHEN Yunmin, XIE Haijian, KE Han, et al. Analytical solution of one-dimensional diffusion of volatile organic compounds (VOCs) through composite liners[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1076-1080. (in Chinese)) doi: 10.3321/j.issn:1000-4548.2006.09.005
[9] 谢海建, 楼章华, 陈云敏, 等. 污染物通过GCL/AL防渗层的对流-弥散解析解[J]. 科学通报, 2010, 55(21): 2153-2163. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201021014.htm XIE Haijian, LOU Zhanghua, CHEN Yunmin, et al. Analytical solution of convection-dispersion of pollutants passing through GCL/AL impermeable layer[J]. Chinese Science Bulletin, 2010, 55(21): 2153-2163. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201021014.htm
[10] CLEALL P J, LI Y C. Analytical solution for diffusion of VOCs through composite landfill liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(9): 850-854. doi: 10.1061/(ASCE)GT.1943-5606.0000506
[11] LI Y C, CLEALL P J. Analytical solutions for advective-dispersive solute transport in double-layered finite porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(4): 438-460. doi: 10.1002/nag.903
[12] 谢海建, 蒋元生, 杨文参, 等. 考虑降解时双层介质中有机污染物的一维扩散解析解[J]. 岩土工程学报, 2013, 35(增刊1): 190-196. http://cge.nhri.cn/cn/article/id/15152 XIE Haijian, JIANG Yuansheng, YANG Wencan, et al. Analytical solutions for contaminant diffusion in two-layered porous media considering degradation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 190-196. (in Chinese)) http://cge.nhri.cn/cn/article/id/15152
[13] XIE H J, LOU Z H, CHEN Y M, et al. An analytical solution to organic contaminant diffusion through composite liners considering the effect of degradation[J]. Geotextiles and Geomembranes, 2013, 36: 10-18. doi: 10.1016/j.geotexmem.2012.10.007
[14] WU X, SHI J Y, HE J. Analytical solutions for diffusion of organic contaminant through GCL triple-layer composite liner considering degradation in liner[J]. Environmental Earth Sciences, 2016, 75(20): 1371. doi: 10.1007/s12665-016-6145-9
[15] XIE H J, ZHANG C H, FENG S J, et al. Analytical model for degradable organic contaminant transport through a GMB/GCL/AL system[J]. Journal of Environmental Engineering, 2018, 144(3): 04018006. doi: 10.1061/(ASCE)EE.1943-7870.0001338
[16] FENG S J, PENG M Q, CHEN Z L, et al. Transient analytical solution for one-dimensional transport of organic contaminants through GM/GCL/SL composite liner[J]. Science of the Total Environment, 2019, 650: 479-492. doi: 10.1016/j.scitotenv.2018.08.413
[17] FENG S J, PENG M Q, CHEN H X, et al. Fully transient analytical solution for degradable organic contaminant transport through GMB/GCL/AL composite liners[J]. Geotextiles and Geomembranes, 2019, 47(3): 282-294. doi: 10.1016/j.geotexmem.2019.01.017
[18] PU H F, QIU J W, ZHANG R J, et al. Analytical solutions for organic contaminant diffusion in triple-layer composite liner system considering the effect of degradation[J]. Acta Geotechnica, 2020, 15(4): 907-921. doi: 10.1007/s11440-019-00783-0
[19] PENG M Q, FENG S J, CHEN H X, et al. An analytical solution for organic pollutant diffusion in a triple-layer composite liner considering the coupling influence of thermal diffusion[J]. Computers and Geotechnics, 2021, 137: 104283. doi: 10.1016/j.compgeo.2021.104283
[20] FOOSE G J, BENSON C H, EDIL T B. Analytical equations for predicting concentration and mass flux from composite liners[J]. Geosynthetics International, 2001, 8(6): 551-575. doi: 10.1680/gein.8.0206
[21] FOOSE G J. Transit-time design for diffusion through composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(7): 590-601. doi: 10.1061/(ASCE)1090-0241(2002)128:7(590)
[22] 谢海建, 陈仁朋, 陈云敏, 等. 考虑非线性吸附时污染物在半无限黏土中的一维扩散解[J]. 岩土工程学报, 2007, 29(9): 1404-1408. doi: 10.3321/j.issn:1000-4548.2007.09.020 XIE Haijian, CHEN Renpeng, CHEN Yunmin, et al. Analytical solution of contaminant diffusion through semi-infinite clay under non-linear adsorption condition[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1404-1408. (in Chinese)) doi: 10.3321/j.issn:1000-4548.2007.09.020
[23] 谢海建, 唐晓武, 陈云敏, 等. 原始土层影响下成层介质污染物一维扩散模型[J]. 浙江大学学报(工学版), 2006, 40(12): 2191-2195. doi: 10.3785/j.issn.1008-973X.2006.12.036 XIE Haijian, TANG Xiaowu, CHEN Yunmin, et al. One-dimensional model for contaminant diffusion through layered media[J]. Journal of Zhejiang University (Engineering Science), 2006, 40(12): 2191-2195. (in Chinese)) doi: 10.3785/j.issn.1008-973X.2006.12.036
[24] 陈云敏, 谢海建, 柯瀚, 等. 层状土中污染物的一维扩散解析解[J]. 岩土工程学报, 2006, 28(4): 521-524. doi: 10.3321/j.issn:1000-4548.2006.04.018 CHEN Yunmin, XIE Haijian, KE Han, et al. Analytical solution of contaminant diffusion through multi-layered soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 521-524. (in Chinese)) doi: 10.3321/j.issn:1000-4548.2006.04.018
[25] ROWE R K, BOOKER J R. The analysis of pollutant migration in a non-homogeneous soil[J]. Géotechnique, 1984, 34(4): 601-612. doi: 10.1680/geot.1984.34.4.601
[26] LEO C J, BOOKER J R. A boundary element method for analysis of contaminant transport in porous media—Ⅱ: non-homogeneous porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(14): 1701-1715. doi: 10.1002/(SICI)1096-9853(19991210)23:14<1701::AID-NAG972>3.0.CO;2-W
[27] CHEN Y M, XIE H J, KE H, et al. An analytical solution for one-dimensional contaminant diffusion through multi-layered system and its applications[J]. Environmental Geology, 2009, 58(5): 1083-1094. doi: 10.1007/s00254-008-1587-3
[28] 余闯, 徐江伟, 陈樟龙, 等. 成层土中考虑衰变作用的污染物迁移规律分析[J]. 自然灾害学报, 2013, 22(1): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201301007.htm YU Chuang, XU Jiangwei, CHEN Zhanglong, et al. Pollutant migration in layered soil with consideration of decay[J]. Journal of Natural Disasters, 2013, 22(1): 45-51. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201301007.htm
[29] LIU C X, BALL W P, ELLIS J H. An analytical solution to the one-dimensional solute advection-dispersion equation in multi-layer porous media[J]. Transport in Porous Media, 1998, 30(1): 25-43. doi: 10.1023/A:1006596904771
[30] LIU G, SI B C. Analytical modeling of one-dimensional diffusion in layered systems with position-dependent diffusion coefficients[J]. Advances in Water Resources, 2008, 31(2): 251-268. doi: 10.1016/j.advwatres.2007.08.008
[31] PÉREZ GUERRERO J S, PIMENTEL L C G, SKAGGS T H. Analytical solution for the advection-dispersion transport equation in layered media[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 274-282.
[32] SWAMI D, SHARMA P K, OJHA C S P. Experimental investigation of solute transport in stratified porous media[J]. ISH Journal of Hydraulic Engineering, 2013, 19(3): 145-153. doi: 10.1080/09715010.2013.793930
[33] SHARMA P K, SAWANT V A, SHUKLA S K, et al. Experimental and numerical simulation of contaminant transport through layered soil[J]. International Journal of Geotechnical Engineering, 2014, 8(4): 345-351. doi: 10.1179/1939787913Y.0000000014
[34] DENG B Q, LI J J, ZHANG B, et al. Integral transform solution for solute transport in multi-layered porous media with the implicit treatment of the interface conditions and arbitrary boundary conditions[J]. Journal of Hydrology, 2014, 517: 566-573. doi: 10.1016/j.jhydrol.2014.05.072
[35] DARDOURI S, SGHAIER J. Adsorption characteristics of layered soil as delay barrier of some organic contaminants: experimental and numerical modeling[J]. Environmental Modelling & Software, 2018, 110: 95-106.
[36] YAN H X, WU J W, XIE H J, et al. An analytical model for chemical diffusion in layered contaminated sediment systems with bioreactive caps[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43: 2471-2490.
[37] 王亮, 谢海建, 吴家葳, 等. 填埋场成层衬垫污染物运移参数等效模型[J]. 浙江大学学报(工学版), 2021, 55(3): 519-529, 554. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202103012.htm WANG Liang, XIE Haijian, WU Jiawei, et al. Equivalent model for pollutant transport parameters of layered landfill liners[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(3): 519-529, 554. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202103012.htm
[38] 席永慧, 刘建航. 饱和多孔介质中污染物迁移模拟[J]. 同济大学学报(自然科学版), 2005, 33(5): 644-648. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200505016.htm XI Yonghui, LIU Jianhang. Modeling of contaminant migration in saturated porous media[J]. Journal of Tongji University, 2005, 33(5): 644-648. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200505016.htm
[39] 张文杰, 黄依艺, 张改革. 填埋场污染物在有限厚度土层中一维对流–扩散–吸附解析解[J]. 岩土工程学报, 2013, 35(7): 1197-1201. http://cge.nhri.cn/cn/article/id/15098 ZHANG Wenjie, HUANG Yiyi, ZHANG Gaige. Analytical solution for 1D advection-diffusion- adsorption transport of landfill contaminants through a soil layer with finite thickness[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1197-1201. (in Chinese)) http://cge.nhri.cn/cn/article/id/15098
[40] LIN Y C, YEH H D. A simple analytical solution for organic contaminant diffusion through a geomembrane to unsaturated soil liner: considering the sorption effect and Robin-type boundary[J]. Journal of Hydrology, 2020, 586: 124873.
[41] 生活垃圾卫生填埋处理技术规范: GB 50869—2013[S]. 北京: 中国建筑工业出版社, 2014. Technical Code for Municipal Solid Waste Sanitary Landfill: GB 50869—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese))
[42] ALSHAWABKEH A N, RAHBAR N. Parametric study of one-dimensional solute transport in deformable porous media[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(8): 1001-1010.
[43] SAVOVIĆ S, DJORDJEVICH A. Numerical solution for temporally and spatially dependent solute dispersion of pulse type input concentration in semi-infinite media[J]. International Journal of Heat and Mass Transfer, 2013, 60: 291-295.
[44] ZHANG W J, ZHANG G G, CHEN Y M. Analyses on a high leachate mound in a landfill of municipal solid waste in China[J]. Environmental Earth Sciences, 2013, 70(4): 1747-1752.
[45] 陈云敏, 兰吉武, 李育超, 等. 垃圾填埋场渗沥液水位壅高及工程控制[J]. 岩石力学与工程学报, 2014, 33(1): 154-163. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401018.htm CHEN Yunmin, LAN Jiwu, LI Yuchao, et al. Development and control of leachate mound in msw landfills[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 154-163. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401018.htm
[46] ZHAN L T, ZENG X, LI Y C, et al. Analytical solution for one-dimensional diffusion of organic pollutants in a geomembrane-bentonite composite barrier and parametric analyses[J]. Journal of Environmental Engineering, 2014, 140(1): 57-68.
[47] QIU J W, PU H F, CHEN X L, et al. Analytical solutions for contaminant diffusion in four-layer sediment-cap system for subaqueous in situ capping[J]. Geotextiles and Geomembranes, 2021, 49(2): 376-387.
[48] PENG C H, FENG S J, CHEN H X, et al. An analytical model for one-dimensional diffusion of degradable contaminant through a composite geomembrane cut-off wall[J]. Journal of Contaminant Hydrology, 2021, 242: 103845.
-
期刊类型引用(41)
1. 侯瑞彬,潘逸尘,董云瑶,付宇廷,刘蒙蒙. 2023年甘肃积石山M_S6.2地震密集观测记录的区域性差异分析. 世界地震工程. 2025(02): 12-20 . 百度学术
2. 常晁瑜,乔峰,薄景山,绽蓓蕾,谷佳沛,李昊宇,田华俊. 甘肃积石山6.2级地震诱发中川乡流滑成因初探. 防灾减灾工程学报. 2025(02): 349-356 . 百度学术
3. 王兰民,许世阳,王平,王睿,车爱兰,周燕国,吴志坚,王谦,蒲小武,柴少峰,马星宇. 2023年积石山6.2级地震诱发大规模黄土液化流滑的特征与启示. 岩土工程学报. 2024(02): 235-243 . 本站查看
4. 刘港,贾俊,张戈,洪勃,董英,裴赢,薛强,高波. 甘肃积石山地震液化型泥流特征、成因及其对黄河上游盆地地震次生灾害风险评估的启示. 西北地质. 2024(02): 220-229 . 百度学术
5. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 . 百度学术
6. 潘建磊,梁庆国,刘海生,时伟,王丽丽. 黄土液化作用及其次生灾害风险评估方法初探——以积石山M_S6.2地震为例. 地震工程学报. 2024(04): 836-845 . 百度学术
7. 袁近远,崔家伟,李兆焱,袁晓铭,张钰洋. 中国模式下砾性土液化指数评价新方法. 土木工程学报. 2024(09): 98-108 . 百度学术
8. 葛一荀,张洁,黄宏伟. 基于贝叶斯分层模型的液化侧移稳健的易损性分析方法. 同济大学学报(自然科学版). 2024(11): 1658-1669 . 百度学术
9. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 . 百度学术
10. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 . 百度学术
11. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 . 百度学术
12. 代言,邓龙胜,毛伟,范文,李培. 马兰黄土液化特性及孔压模型参数研究. 地震工程学报. 2023(02): 338-345+361 . 百度学术
13. 隆然,刘兴东. 基于致灾机理分析的公路滑坡稳定性评价及治理方案研究. 铁道勘察. 2023(02): 33-37 . 百度学术
14. 贾科敏,许成顺,杜修力,张小玲,宋佳,苏卓林. 可液化倾斜场地的侧向扩展机制分析. 岩土力学. 2023(06): 1837-1848 . 百度学术
15. 罗增文,苏卓林,贾科敏,许成顺. 地震作用下碎石桩场地侧向位移规律研究. 震灾防御技术. 2023(02): 361-368 . 百度学术
16. 王兰民,柴少峰,薄景山,王平,许世阳,李孝波,蒲小武. 黄土地震滑坡的触发类型、特征与成灾机制. 岩土工程学报. 2023(08): 1543-1554 . 本站查看
17. 李孝波,欧阳刚垒,宋霖君,吴义文,徐建元. 黄土高原地区场地设计反应谱特征周期研究. 地震工程学报. 2023(05): 1161-1170 . 百度学术
18. 柴少峰,王兰民,王平,郭海涛,夏晓雨,车高凤,王会娟. 石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究. 岩土工程学报. 2023(12): 2565-2574 . 本站查看
19. 马为功,王兰民,许世阳,李登科,柴少峰. 饱和黄土隧道围岩地震液化特征的振动台试验研究. 岩土工程学报. 2023(S2): 171-176 . 本站查看
20. 李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价. 工程科学学报. 2022(03): 440-450 . 百度学术
21. 程超,钟秀梅,刘钊钊,刘富强,江志杰,王谦,陶冬旺. 饱和黄土动态液化和静态液化机理的差异性研究. 地震工程学报. 2022(01): 136-144 . 百度学术
22. 袁近远,李天宁,王兰民,汪云龙,陈龙伟,李兆焱,袁晓铭,王永志,陈卓识,李瑞山. 砂土液化概率计算新方法. 岩土工程学报. 2022(03): 541-549 . 本站查看
23. 王谦,钟秀梅,高中南,马金莲,万秀红,杨义煊,刘岸果. 门源M6.9地震诱发地质灾害特征研究. 地震工程学报. 2022(02): 352-359 . 百度学术
24. 葛一荀,张洁,祝刘文,程小久,廖先斌,汪华安,孔明,郑文棠,王占华. 砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究. 工程地质学报. 2022(02): 507-519 . 百度学术
25. 包含,马扬帆,兰恒星,彭建兵,张科科,许江波,晏长根,孙强. 基于微结构量化的含渐变带黄土各向异性特征研究. 中国公路学报. 2022(10): 88-99 . 百度学术
26. 苏卓林,贾科敏,许成顺,豆鹏飞,张小玲. 双向地震作用下液化水平和倾斜场地-桩基-桥梁结构地震反应的差异研究. 地震科学进展. 2022(11): 505-512 . 百度学术
27. 宋洋,刘思源,王晨炟. 含水率和干湿循环对原状黄土变形特性的影响. 辽宁工程技术大学学报(自然科学版). 2021(02): 148-155 . 百度学术
28. 王玉峰,林棋文,李坤,史安文,李天话,程谦恭. 高速远程滑坡动力学研究进展. 地球科学与环境学报. 2021(01): 164-181 . 百度学术
29. 颜灵勇,李孝波,欧阳刚垒. 黄土地震滑坡形成机理研究的若干进展. 防灾科技学院学报. 2021(02): 46-53 . 百度学术
30. 马星宇,王兰民,王谦,王平,钟秀梅,蒲小武,刘富强. 饱和黄土液化流动性试验研究. 岩土工程学报. 2021(S1): 161-165 . 本站查看
31. 袁晓铭,费扬,陈龙伟,袁近远,陈同之,张思宇,王义德. 含剧烈地震动作用不同埋深砂土液化判别统一公式. 岩石力学与工程学报. 2021(10): 2101-2112 . 百度学术
32. 李旭东,王平,王丽丽,王会娟,常文斌,钱紫玲. 强震作用下坡顶建筑荷载对边坡稳定性影响研究. 地震工程学报. 2021(05): 1220-1227 . 百度学术
33. 张子东,张晓超,任鹏,崔雪婷. 非饱和黄土动力液化研究——以党家岔滑坡为例. 地震工程学报. 2021(05): 1228-1237 . 百度学术
34. 许成顺,贾科敏,杜修力,王志华,宋佳,张小玲. 液化侧向扩展场地-桩基础抗震研究综述. 防灾减灾工程学报. 2021(04): 768-791 . 百度学术
35. 马晓文,梁庆国,赵涛,周稳弟. 土动力学研究综述及思考. 世界地震工程. 2021(04): 217-230 . 百度学术
36. 许成顺,王冰,杜修力,岳冲,杨钰荣. 循环加载频率对砂土液化模式的影响试验研究. 土木工程学报. 2021(11): 109-118 . 百度学术
37. 郭海涛,许世阳,蒲小武,张晓军,马星宇. 海原地震石碑塬液化滑移地表特征形成机制探讨. 地震工程学报. 2020(05): 1159-1164 . 百度学术
38. 杨博,田文通,孙军杰,刘琨,徐舜华. 海原大地震诱发石碑塬黄土滑坡机制探讨. 地震工程学报. 2020(05): 1165-1172 . 百度学术
39. 马星宇,王兰民,钟秀梅,蒲小武,刘富强,王谦. 地震诱发石碑塬黄土地层液化滑移距离研究. 地震工程学报. 2020(06): 1674-1682 . 百度学术
40. 车福东,王涛,辛鹏,张泽林,梁昌玉,刘甲美. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例. 地质通报. 2020(12): 1981-1992 . 百度学术
41. MA Xingyu,WANG Lanmin,WANG Qian,WANG Ping,ZHONG Xiumei,PU Xiaowu,LIU Fuqiang,XU Xiaowei. Flow Characteristics of Large-Scale Liquefaction-Slip of the Loess Strata in Shibei Tableland, Guyuan City, Induced by the 1920 Haiyuan M8(1/2) Earthquake. Earthquake Research in China. 2020(04): 469-481 . 必应学术
其他类型引用(32)
-
其他相关附件