Triaxial creep properties and model of red sandstone under freeze-thaw environment
-
摘要: 为研究寒区岩体工程在冻融循环与长期荷载耦合作用下的时效力学特性,对不同冻融循条件下的饱和红砂岩进行分级加卸载三轴蠕变试验,研究冻融循环对岩石蠕变特性的影响。结果表明:冻融循环对红砂岩蠕变变形的影响与加载应力水平有关。低应力水平下,岩石黏弹性应变随冻融次数的增加近似线性缓慢增长;而高应力水平时则呈非线性增长;黏塑性应变随冻融次数的增加均呈近似线性增长,第四级加载应力水平(70%
σc )为红砂岩蠕变变形特征的分界点。红砂岩稳态蠕变速率随冻融循环次数的增加呈指数型增长。根据红砂岩蠕变试验结果,建立考虑冻融循环作用影响及蠕变损伤的冻融-损伤蠕变模型,得到三维应力状态下岩石蠕变本构方程;对模型进行验证及参数识别,理论值与试验值吻合较好;分析了冻融循环作用对模型参数的影响。研究结果为寒区岩体工程的建设及长期稳定性分析提供理论依据。Abstract: In order to study the time-effectiveness mechanical properties of rock mass engineering in cold regions under the coupling of freeze-thaw cycles and long-term loads, the triaxial multi-level loading and unloading creep tests are carried out on saturated red sandstone under different freeze-thaw cycles. The results show that the effects of freeze-thaw cycles on the creep deformation of red sandstone are related to the loading stress level. At low stress levels, the viscoelastic strain of rock increases approximately linearly and slowly with the increasing freeze-thaw cycles, and at high stress levels, it increases nonlinearly. The viscoplastic strain increases linearly with increasing freeze-thaw cycles. The fourth-level loading stress level (70%σc ) is the boundary point of the creep deformation characteristics of red sandstone. The steady-state creep rate of red sandstone increases exponentially with the increase of the freeze-thaw cycles. Based on the creep test results of the red sandstone, the freeze-thaw-damage creep model considering the effects of freeze-thaw cycles and creep damage is established. The creep equation for rock under three-dimensional stress is obtained. The proposed model is verified and its parameters are identified. The theoretical and experimental data are in good agreement. The influences of freeze-thaw cycles on the model parameters are analyzed. The research results may provide a theoretical basis for the construction of rock mass engineering and long-term stability analysis in cold regions. -
-
表 1 围压2 MPa时,不同冻融条件下红砂岩三轴蠕变试验中各级偏应力加载值
Table 1 Deviatoric stresses in triaxial creep tests on red sandstone after different freeze-thaw conditions at confining pressure of 2 MPa
冻融循环次数/次 岩样编号 纵波波速/(m·s-1) 偏应力水平/MPa 第一级 第二级 第三级 第四级 第五级 第六级 0 24-6 1185 8.27 10.34 12.40 14.47 16.54 18.60 1 24-16 1174 7.65 9.57 11.48 13.39 15.30 17.22 5 24-9 1191 7.12 8.90 10.67 12.45 14.23 16.01 9 24-22 1164 6.74 8.43 10.12 11.80 13.49 15.17 13 24-1 1180 6.60 8.26 9.91 11.56 13.21 14.86 表 2 围压2 MPa时,冻融5次后模型参数
Table 2 Model parameters after 5 freeze-thaw cycles at confining pressure of 2 MPa
偏应力/MPa K1(N)/GPa G1(N)/GPa K2(N)/GPa G2(N)/GPa G3(N)/GPa η1(N)/(GPa∙h-1) η2(N)/(GPa∙h-1) α(N) R2 7.12 0.823 0.706 10.248 8.679 27.914 35.707 0.9803 8.90 0.892 0.681 11.358 7.761 29.650 31.068 0.9453 10.67 1.014 0.678 12.033 6.435 33.722 29.147 0.9719 12.45 1.152 0.660 13.714 5.726 26.912 37.183 0.9486 14.23 1.302 0.640 14.847 4.895 27.377 38.027 0.9935 16.01 1.354 0.631 15.628 4.120 26.642 35.014 11.587 0.286 0.9524 -
[1] YAMABE T, NEAUPANE K M. Determination of some thermo-mechanical properties of sirahama sandstone under subzero temperature condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 1029-1034. doi: 10.1016/S1365-1609(01)00067-3
[2] CHEN T C, YEUNG M R, MORI N. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology, 2004, 38(2/3): 127-136.
[3] YAVUZ H, ALTINDAG R, SARAC S, et al. Estimating the index properties of deteriorated carbonate rocks due to freeze-thaw and thermal shock weathering[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(5): 767-775. doi: 10.1016/j.ijrmms.2005.12.004
[4] 赖远明, 吴紫汪, 朱元林, 等. 大坂山隧道围岩冻融损伤的CT分析[J]. 冰川冻土, 2000, 22(3): 206-210. doi: 10.3969/j.issn.1000-0240.2000.03.003 LAI Yuan-ming, WU Zi-wang, ZHU Yuan-lin, et al. CT Analysis of frost damage of the surrounding rocks of a tunnel in the Daban Mountain[J]. Journal of Glaciology and Geocryology, 2000, 22(3): 206-210. (in Chinese) doi: 10.3969/j.issn.1000-0240.2000.03.003
[5] 徐光苗, 刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究[J]. 岩石力学与工程学报, 2005, 24(17): 3076-3082. doi: 10.3321/j.issn:1000-6915.2005.17.012 XU Guang-miao, LIU Quan-sheng. Analysis of mechanism of rock failure due to freeze-thaw cycling and mechanical testing study on frozen-thawed rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3076-3082. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.17.012
[6] 母剑桥, 裴向军, 黄勇, 等. 冻融岩体力学特性实验研究[J]. 工程地质学报, 2013, 21(1): 103-108. doi: 10.3969/j.issn.1004-9665.2013.01.013 MU Jian-qiao, PEI Xiang-jun, HUANG Yong, et al. Experimental research on mechanical characteristcs of rock with cycles of freeing-thawing action[J]. Journal of Engineering Geology, 2013, 21(1): 103-108. (in Chinese) doi: 10.3969/j.issn.1004-9665.2013.01.013
[7] 韩铁林, 师俊平, 陈蕴生. 砂岩在化学腐蚀和冻融循环共同作用下力学特征劣化的试验研究[J]. 水利学报, 2016, 47(5): 644-655. doi: 10.13243/j.cnki.slxb.20150810 HAN Tie-lin, SHI Jun-ping, CHEN Yun-sheng. Laboratory investigations on the mechanical properties degradation of sandstone under the combined action between water chemical corrosion and freezing and thawing cycles[J]. Journal of Hydraulic Engineering, 2016, 47(5): 644-655. (in Chinese) doi: 10.13243/j.cnki.slxb.20150810
[8] 张慧梅, 杨更社. 岩石冻融力学实验及损伤扩展特性[J]. 中国矿业大学学报, 2011, 40(1): 140-151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201101023.htm ZHANG Hui-mei, YANG Geng-she. Freeze-thaw cycling and mechanical experiment and damage propagation characteristics of rock[J]. Journal of China University of Mining & Technology, 2011, 40(1): 140-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201101023.htm
[9] 张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报, 2010, 29(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003007.htm ZHANG Hui-mei, YANG Geng-she. Research on damage model of rock under coupling action of freeze-thaw and load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 471-476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003007.htm
[10] LU Y, LI X, CHAN A. Damage constitutive model of single flaw sandstone under freeze-thaw and load[J]. Cold Regions Science and Technology, 2019, 159: 20-28. doi: 10.1016/j.coldregions.2018.11.017
[11] 李新平, 路亚妮, 王仰君. 冻融荷载耦合作用下单裂隙岩体损伤模型研究[J]. 岩石力学与工程学报, 2013, 32(11): 2308-2315. LI Xin-ping, LU Ya-ni, WENG Yang-jun. Research on damage model of single jointed rock masses under coupling action of freeze-thaw and loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2308-2315. (in Chinese)
[12] SHAO J F, ZHU Q Z, SU K. Modeling of creep in rock materials in terms of material degradation[J]. Computers and Geotechnics, 2003, 30: 549-555. doi: 10.1016/S0266-352X(03)00063-6
[13] SHALABI F I. Analysis of time-dependent behavior of tunneling in squeezing ground using two different creep models[J]. Tunnelling and Underground Space Technology, 2005, 20: 271-279. doi: 10.1016/j.tust.2004.09.001
[14] STERPI D, GIODA G. Visco-plastic behaviour around advancing tunnels in squeezing rock[J]. Rock Mechanics and Rock Engineering, 2009, 42: 319-339. doi: 10.1007/s00603-007-0137-8
[15] FABRE G, PELLET F. Creep and time-dependent damage in argillaceous rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43: 950-960. doi: 10.1016/j.ijrmms.2006.02.004
[16] TSAI L S, HSIEH Y M, WENG M C. Time-dependent deformation behaviors of weak sandstones[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45: 144-154. doi: 10.1016/j.ijrmms.2007.04.008
[17] YANG S Q, JING H W, CHENG L. Influences of pore pressure on short-term and creep mechanical behavior of red sandstone[J]. Engineering Geology, 2014, 179: 10-23 doi: 10.1016/j.enggeo.2014.06.016
[18] 杨秀荣, 姜谙男, 王善勇, 等. 冻融循环条件下片麻岩蠕变特性试验研究[J]. 岩土力学, 2019, 40(11): 4331-4340. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911024.htm YANG Xiu-rong, JIANG An-nan, WANG Shan-yong, et al. Experimental study on creep characteristics of gneiss under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2019, 40(11): 4331-4340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911024.htm
[19] LI J, ZHU L, ZHOU K, et al. Experimental investigation on the effects of ambient freeze-thaw cycling on creep mechanical properties of sandstone under step loading[J]. IEEE Access, 2019(7): 108513-108520.
[20] 陈国庆, 郭帆, 王剑超, 等. 冻融后石英砂岩三轴蠕变特性试验研究[J]. 岩土力学, 2017, 38(增刊1): 203-210. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1030.htm CHEN Guo-qing, GUO Fan, WANG Jian-chao, et al. Experimental study of creep properties of quartz sandstone after freezing-thawing cycles[J]. Rock and Soil Mechanics, 2017, 38(S1): 203-210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1030.htm
[21] 徐卫亚, 杨圣奇, 褚卫江. 岩石非线性黏弹塑性流变模型(河海模型)及其应用[J]. 岩土力学与工程学报, 2006, 25(3): 433-447. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200603000.htm XU Wei-ya, YANG Sheng-qi, CHU Wei-jiang. Nonlinear viscoelasto-plastic rheological model (Hohai Model) of rock and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 433-447. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200603000.htm
[22] 李栋伟, 汪仁和, 范菊红. 白垩系冻结软岩非线性流变模型试验研究[J]. 岩土工程学报, 2011, 33(3): 398-403. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201103017.htm LI Dong-wei, WANG Ren-he, FAN Ju-hong. Nonlinear rheological model for frozen soft rock during Cretaceous period[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 398-403. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201103017.htm
[23] MA L, DAEMEN J J K. An experimental study on creep of welded tuff[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(2): 282-291.
[24] ZHAO Y, ZHANG L, WANG W, et al. Creep behavior of intact and cracked limestone under multi-level loading and unloading cycles[J]. Rock Mechanics and Rock Engineering, 2017, 50(6): 1409-1424.
[25] SONG Y, ZHANG L, YANG H, et al. Experimental study on the creep behavior of red sandstone under low temperatures[J]. Advances in Civil Engineering, 2019: 1-10.
[26] 夏才初, 钟时猷. 考虑加载历史影响的蠕变试验数据整理方法[J]. 中南矿冶学院学报, 1989, 20(1): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD198901002.htm XIA Cai-chu, ZHONG Shi-you. Experimental data processing method in consideration of influence of loading history on rock specimen deformation[J]. Journal of Central-South Institute of Mining and Metallurgy, 1989, 20(1): 22-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD198901002.htm
[27] 周宏伟, 王春萍, 段志强, 等. 基于分数阶导数的盐岩流变本构模型[J]. 中国科学:物理学 力学 天文学, 2012, 42(3): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201203012.htm ZHOU Hong-wei, WANG Chun-ping, DUAN Zhi-qiang, et al. Time-based fractional derivative approach to creep constitutive model of salt rock[J]. Scientia Sinca Physica, Mechanica & Astronmica, 2012, 42(3): 310-318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201203012.htm
[28] SANJAY K S, SHRAWAN K G, NAGARATNAM S. Active earth pressures on retaining wall for c-φ soil backfill under seismic loading condition[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 690-696.
-
期刊类型引用(22)
1. 卢汉青,包卫星,陈锐,郭强,尹严. 基于核磁共振技术的冻融板岩损伤特性试验研究. 地下空间与工程学报. 2025(01): 78-86+99 . 百度学术
2. 贾朝军,庞锐锋,俞隽,雷明锋,李忠. 基于离散元的岩石冻融损伤劣化机制研究. 岩土力学. 2024(02): 588-600 . 百度学术
3. 赵越,司运航,张译丹,赵京禹. 水化-冻融耦合条件下大理岩蠕变损伤本构模型. 吉林大学学报(地球科学版). 2024(01): 231-241 . 百度学术
4. 樊赖宇,吴志军,储昭飞,翁磊,王智洋,刘泉声,陈结. 动态冲击下红砂岩蠕变特性及损伤本构模型. 岩土力学. 2024(06): 1608-1622 . 百度学术
5. 刘文博,张树光,黄翔,刘轶品. 基于蠕变曲线对称的蠕变模型研究及参数敏感性分析. 煤炭科学技术. 2024(07): 48-56 . 百度学术
6. 宋勇军,操警辉,程柯岩,杨慧敏,毕冉,张琨. 砂岩冻结/解冻过程蠕变特性研究. 水文地质工程地质. 2024(06): 93-103 . 百度学术
7. 王波,任永政,田志银,马世纪,王军,黄万朋,王灵. 流变扰动条件下岩石微观损伤试验研究. 煤炭学报. 2024(S2): 852-861 . 百度学术
8. 杨志全,甘进,樊详珑,朱颖彦,杨溢,丁渝池. 岩石冻融损伤机理研究进展及展望. 防灾减灾工程学报. 2023(01): 176-188 . 百度学术
9. 赵志波. 冻融条件下隧道围岩单轴蠕变力学特性试验及本构模型. 黑龙江科技大学学报. 2023(02): 299-305 . 百度学术
10. 苗浩东,任富强. 冻融循环作用下不同含水率砂岩抗拉特性研究. 工矿自动化. 2023(05): 133-138+152 . 百度学术
11. 闫建兵,张小强,宋选民,王开,姜玉龙,岳少飞. 低围压条件下无烟煤三轴蠕变特性试验研究(英文). Journal of Central South University. 2023(05): 1618-1630 . 百度学术
12. 张卫泽,王琳庆,郭文重,陈雷. 基于Weibull分布的红砂岩三轴蠕变试验及模型研究. 水文地质工程地质. 2023(04): 137-148 . 百度学术
13. 赵越,李磊,闫晗,肖万山,苏艳军. 水化-冻融耦合作用下大理岩单轴蠕变力学特性. 吉林大学学报(地球科学版). 2023(04): 1195-1203 . 百度学术
14. 包卫星,卢汉青,郭强,尹严. 新疆高寒炭质板岩隧道围岩冻融劣化特性研究. 工程地质学报. 2023(04): 1213-1224 . 百度学术
15. 王丹,冯子军,张子翔. 砂岩的三维非线性损伤蠕变特性. 矿业研究与开发. 2023(10): 139-144 . 百度学术
16. 付宏渊,段鑫波,史振宁. 冻融循环下粉砂质泥岩强度劣化特性及细观机理研究. 工程地质学报. 2023(06): 1833-1841 . 百度学术
17. 张进元. 冻融作用下公路块石路基损伤特性研究. 青海交通科技. 2023(06): 131-134 . 百度学术
18. 王璐. 二次损伤岩石的蠕变研究综述. 工程技术研究. 2022(07): 39-42 . 百度学术
19. 唐志强,吉锋,许汉华,冯文凯,何萧. 豫南燕山期花岗岩蠕变特性及非线性蠕变损伤模型. 科学技术与工程. 2022(16): 6421-6429 . 百度学术
20. 尹彦波. 不同应变率下冻融损伤大理岩的动态压缩特性研究. 矿业研究与开发. 2022(08): 139-145 . 百度学术
21. 马志奇,杨小彬,刘腾辉,李志辉. 粒径大小对颗粒堆积体Burgers模型蠕变参数相似试验研究. 矿业科学学报. 2022(06): 730-737 . 百度学术
22. 王飞,高明忠,邱冠豪,汪亦显,周昌台,王之禾. 初始损伤–载荷–冻融作用下红砂岩的孔隙结构及力学特性. 工程科学与技术. 2022(06): 194-203 . 百度学术
其他类型引用(43)