Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SONG Yong-jun, ZHANG Lei-tao, REN Jian-xi, CHEN Jia-xing, CHE Yong-xin, YANG Hui-min, BI Ran. Triaxial creep properties and model of red sandstone under freeze-thaw environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 841-849. DOI: 10.11779/CJGE202105007
Citation: SONG Yong-jun, ZHANG Lei-tao, REN Jian-xi, CHEN Jia-xing, CHE Yong-xin, YANG Hui-min, BI Ran. Triaxial creep properties and model of red sandstone under freeze-thaw environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 841-849. DOI: 10.11779/CJGE202105007

Triaxial creep properties and model of red sandstone under freeze-thaw environment

More Information
  • Received Date: August 09, 2020
  • Available Online: December 04, 2022
  • In order to study the time-effectiveness mechanical properties of rock mass engineering in cold regions under the coupling of freeze-thaw cycles and long-term loads, the triaxial multi-level loading and unloading creep tests are carried out on saturated red sandstone under different freeze-thaw cycles. The results show that the effects of freeze-thaw cycles on the creep deformation of red sandstone are related to the loading stress level. At low stress levels, the viscoelastic strain of rock increases approximately linearly and slowly with the increasing freeze-thaw cycles, and at high stress levels, it increases nonlinearly. The viscoplastic strain increases linearly with increasing freeze-thaw cycles. The fourth-level loading stress level (70%σc) is the boundary point of the creep deformation characteristics of red sandstone. The steady-state creep rate of red sandstone increases exponentially with the increase of the freeze-thaw cycles. Based on the creep test results of the red sandstone, the freeze-thaw-damage creep model considering the effects of freeze-thaw cycles and creep damage is established. The creep equation for rock under three-dimensional stress is obtained. The proposed model is verified and its parameters are identified. The theoretical and experimental data are in good agreement. The influences of freeze-thaw cycles on the model parameters are analyzed. The research results may provide a theoretical basis for the construction of rock mass engineering and long-term stability analysis in cold regions.
  • [1]
    YAMABE T, NEAUPANE K M. Determination of some thermo-mechanical properties of sirahama sandstone under subzero temperature condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 1029-1034. doi: 10.1016/S1365-1609(01)00067-3
    [2]
    CHEN T C, YEUNG M R, MORI N. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology, 2004, 38(2/3): 127-136.
    [3]
    YAVUZ H, ALTINDAG R, SARAC S, et al. Estimating the index properties of deteriorated carbonate rocks due to freeze-thaw and thermal shock weathering[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(5): 767-775. doi: 10.1016/j.ijrmms.2005.12.004
    [4]
    赖远明, 吴紫汪, 朱元林, 等. 大坂山隧道围岩冻融损伤的CT分析[J]. 冰川冻土, 2000, 22(3): 206-210. doi: 10.3969/j.issn.1000-0240.2000.03.003

    LAI Yuan-ming, WU Zi-wang, ZHU Yuan-lin, et al. CT Analysis of frost damage of the surrounding rocks of a tunnel in the Daban Mountain[J]. Journal of Glaciology and Geocryology, 2000, 22(3): 206-210. (in Chinese) doi: 10.3969/j.issn.1000-0240.2000.03.003
    [5]
    徐光苗, 刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究[J]. 岩石力学与工程学报, 2005, 24(17): 3076-3082. doi: 10.3321/j.issn:1000-6915.2005.17.012

    XU Guang-miao, LIU Quan-sheng. Analysis of mechanism of rock failure due to freeze-thaw cycling and mechanical testing study on frozen-thawed rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3076-3082. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.17.012
    [6]
    母剑桥, 裴向军, 黄勇, 等. 冻融岩体力学特性实验研究[J]. 工程地质学报, 2013, 21(1): 103-108. doi: 10.3969/j.issn.1004-9665.2013.01.013

    MU Jian-qiao, PEI Xiang-jun, HUANG Yong, et al. Experimental research on mechanical characteristcs of rock with cycles of freeing-thawing action[J]. Journal of Engineering Geology, 2013, 21(1): 103-108. (in Chinese) doi: 10.3969/j.issn.1004-9665.2013.01.013
    [7]
    韩铁林, 师俊平, 陈蕴生. 砂岩在化学腐蚀和冻融循环共同作用下力学特征劣化的试验研究[J]. 水利学报, 2016, 47(5): 644-655. doi: 10.13243/j.cnki.slxb.20150810

    HAN Tie-lin, SHI Jun-ping, CHEN Yun-sheng. Laboratory investigations on the mechanical properties degradation of sandstone under the combined action between water chemical corrosion and freezing and thawing cycles[J]. Journal of Hydraulic Engineering, 2016, 47(5): 644-655. (in Chinese) doi: 10.13243/j.cnki.slxb.20150810
    [8]
    张慧梅, 杨更社. 岩石冻融力学实验及损伤扩展特性[J]. 中国矿业大学学报, 2011, 40(1): 140-151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201101023.htm

    ZHANG Hui-mei, YANG Geng-she. Freeze-thaw cycling and mechanical experiment and damage propagation characteristics of rock[J]. Journal of China University of Mining & Technology, 2011, 40(1): 140-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201101023.htm
    [9]
    张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报, 2010, 29(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003007.htm

    ZHANG Hui-mei, YANG Geng-she. Research on damage model of rock under coupling action of freeze-thaw and load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 471-476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003007.htm
    [10]
    LU Y, LI X, CHAN A. Damage constitutive model of single flaw sandstone under freeze-thaw and load[J]. Cold Regions Science and Technology, 2019, 159: 20-28. doi: 10.1016/j.coldregions.2018.11.017
    [11]
    李新平, 路亚妮, 王仰君. 冻融荷载耦合作用下单裂隙岩体损伤模型研究[J]. 岩石力学与工程学报, 2013, 32(11): 2308-2315.

    LI Xin-ping, LU Ya-ni, WENG Yang-jun. Research on damage model of single jointed rock masses under coupling action of freeze-thaw and loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2308-2315. (in Chinese)
    [12]
    SHAO J F, ZHU Q Z, SU K. Modeling of creep in rock materials in terms of material degradation[J]. Computers and Geotechnics, 2003, 30: 549-555. doi: 10.1016/S0266-352X(03)00063-6
    [13]
    SHALABI F I. Analysis of time-dependent behavior of tunneling in squeezing ground using two different creep models[J]. Tunnelling and Underground Space Technology, 2005, 20: 271-279. doi: 10.1016/j.tust.2004.09.001
    [14]
    STERPI D, GIODA G. Visco-plastic behaviour around advancing tunnels in squeezing rock[J]. Rock Mechanics and Rock Engineering, 2009, 42: 319-339. doi: 10.1007/s00603-007-0137-8
    [15]
    FABRE G, PELLET F. Creep and time-dependent damage in argillaceous rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43: 950-960. doi: 10.1016/j.ijrmms.2006.02.004
    [16]
    TSAI L S, HSIEH Y M, WENG M C. Time-dependent deformation behaviors of weak sandstones[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45: 144-154. doi: 10.1016/j.ijrmms.2007.04.008
    [17]
    YANG S Q, JING H W, CHENG L. Influences of pore pressure on short-term and creep mechanical behavior of red sandstone[J]. Engineering Geology, 2014, 179: 10-23 doi: 10.1016/j.enggeo.2014.06.016
    [18]
    杨秀荣, 姜谙男, 王善勇, 等. 冻融循环条件下片麻岩蠕变特性试验研究[J]. 岩土力学, 2019, 40(11): 4331-4340. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911024.htm

    YANG Xiu-rong, JIANG An-nan, WANG Shan-yong, et al. Experimental study on creep characteristics of gneiss under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2019, 40(11): 4331-4340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911024.htm
    [19]
    LI J, ZHU L, ZHOU K, et al. Experimental investigation on the effects of ambient freeze-thaw cycling on creep mechanical properties of sandstone under step loading[J]. IEEE Access, 2019(7): 108513-108520.
    [20]
    陈国庆, 郭帆, 王剑超, 等. 冻融后石英砂岩三轴蠕变特性试验研究[J]. 岩土力学, 2017, 38(增刊1): 203-210. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1030.htm

    CHEN Guo-qing, GUO Fan, WANG Jian-chao, et al. Experimental study of creep properties of quartz sandstone after freezing-thawing cycles[J]. Rock and Soil Mechanics, 2017, 38(S1): 203-210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1030.htm
    [21]
    徐卫亚, 杨圣奇, 褚卫江. 岩石非线性黏弹塑性流变模型(河海模型)及其应用[J]. 岩土力学与工程学报, 2006, 25(3): 433-447. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200603000.htm

    XU Wei-ya, YANG Sheng-qi, CHU Wei-jiang. Nonlinear viscoelasto-plastic rheological model (Hohai Model) of rock and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 433-447. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200603000.htm
    [22]
    李栋伟, 汪仁和, 范菊红. 白垩系冻结软岩非线性流变模型试验研究[J]. 岩土工程学报, 2011, 33(3): 398-403. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201103017.htm

    LI Dong-wei, WANG Ren-he, FAN Ju-hong. Nonlinear rheological model for frozen soft rock during Cretaceous period[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 398-403. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201103017.htm
    [23]
    MA L, DAEMEN J J K. An experimental study on creep of welded tuff[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(2): 282-291.
    [24]
    ZHAO Y, ZHANG L, WANG W, et al. Creep behavior of intact and cracked limestone under multi-level loading and unloading cycles[J]. Rock Mechanics and Rock Engineering, 2017, 50(6): 1409-1424.
    [25]
    SONG Y, ZHANG L, YANG H, et al. Experimental study on the creep behavior of red sandstone under low temperatures[J]. Advances in Civil Engineering, 2019: 1-10.
    [26]
    夏才初, 钟时猷. 考虑加载历史影响的蠕变试验数据整理方法[J]. 中南矿冶学院学报, 1989, 20(1): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD198901002.htm

    XIA Cai-chu, ZHONG Shi-you. Experimental data processing method in consideration of influence of loading history on rock specimen deformation[J]. Journal of Central-South Institute of Mining and Metallurgy, 1989, 20(1): 22-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD198901002.htm
    [27]
    周宏伟, 王春萍, 段志强, 等. 基于分数阶导数的盐岩流变本构模型[J]. 中国科学:物理学 力学 天文学, 2012, 42(3): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201203012.htm

    ZHOU Hong-wei, WANG Chun-ping, DUAN Zhi-qiang, et al. Time-based fractional derivative approach to creep constitutive model of salt rock[J]. Scientia Sinca Physica, Mechanica & Astronmica, 2012, 42(3): 310-318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201203012.htm
    [28]
    SANJAY K S, SHRAWAN K G, NAGARATNAM S. Active earth pressures on retaining wall for c-φ soil backfill under seismic loading condition[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 690-696.
  • Cited by

    Periodical cited type(16)

    1. 张期树,董俊利,徐方,冷伍明,吴爽爽,王文兵. 预应力水平和加固模式对铁路路基变形特性的影响. 中国铁道科学. 2025(02): 18-28 .
    2. 段君义,吴俊江,粟雨,吕志涛,林宇亮,杨果林. 浅层膨胀土及其纤维改良土的剪切强度特性. 浙江大学学报(工学版). 2024(03): 547-556+569 .
    3. 崔颖辉,罗强,冯桂帅,王腾飞. 一种惯性式路基激振装置的研发与现场标定. 铁道学报. 2024(03): 184-192 .
    4. 徐方,翟斌,冷伍明,叶新宇,张期树,赵春彦. 基于大型动三轴试验和神经网络的粗粒土临界动应力研究. 铁道学报. 2023(05): 119-127 .
    5. 冷伍明,董俊利,艾希,徐方,张期树. 新型预应力路堤侧压力板设计间距研究. 中南大学学报(自然科学版). 2023(04): 1379-1392 .
    6. 张期树,冷伍明,徐方,阮波,董俊利. 新型预应力路基静力加固性能与机理研究. 铁道科学与工程学报. 2023(07): 2488-2499 .
    7. 董俊利,冷伍明,张期树,徐方,聂如松. 重载列车作用下新型预应力路基动应力响应规律研究. 中南大学学报(自然科学版). 2023(08): 3286-3302 .
    8. 徐方,董俊利,冷伍明,张期树,阮波,邓志龙. 重载列车荷载下新型预应力路基的加速度响应试验研究. 土木工程学报. 2023(10): 149-159 .
    9. 冷伍明,董俊利,徐方,赵春彦,阮波,叶新宇,张期树. 预应力路堤侧压力板间距确定方法初探. 铁道科学与工程学报. 2022(01): 100-111 .
    10. 冷伍明,邓志龙,徐方,张期树,董俊利,刘思慧. 基于路基土蠕变效应的路基预应力损失模型研究. 岩土力学. 2022(06): 1671-1682 .
    11. 徐方,张期树,冷伍明,邓志龙,董俊利,刘思慧. 基于附加应力扩散效应的新型预应力路堤稳定性分析. 岩土力学. 2022(S1): 431-442 .
    12. 贺敏,仰宗宝,徐卓君,曹文贵,张超,徐赞. 地基附加应力改进计算方法及其规律分析. 湖南工业大学学报. 2022(05): 20-28 .
    13. 聂如松,杜市委,阮波,张向京. 考虑荷载间歇的细粒土填料累积塑性应变与临界动应力试验研究. 铁道学报. 2021(10): 98-108 .
    14. 艾希,冷伍明,徐方,张期树,翟斌. 新型预应力路基水平附加应力计算的图表法. 岩土力学. 2020(01): 253-266+277 .
    15. 冷伍明,张期树,徐方,冷慧康,杨奇,聂如松. 铁路预应力路堤加固技术数值研究. 铁道工程学报. 2020(01): 6-11+114 .
    16. 储灿清. 基于多元分析的地铁车站深基坑形变规律研究. 测绘. 2020(01): 35-40 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return