Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

致密砂岩水平井多裂缝扩展及转向规律研究

夏彬伟, 刘浪, 彭子烨, 高玉刚

夏彬伟, 刘浪, 彭子烨, 高玉刚. 致密砂岩水平井多裂缝扩展及转向规律研究[J]. 岩土工程学报, 2020, 42(8): 1549-1555. DOI: 10.11779/CJGE202008021
引用本文: 夏彬伟, 刘浪, 彭子烨, 高玉刚. 致密砂岩水平井多裂缝扩展及转向规律研究[J]. 岩土工程学报, 2020, 42(8): 1549-1555. DOI: 10.11779/CJGE202008021
XIA Bin-wei, LIU Lang, PENG Zi-ye, GAO Yu-gang. Multi-fracture propagation and deflection laws of horizontal wells in tight sandstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1549-1555. DOI: 10.11779/CJGE202008021
Citation: XIA Bin-wei, LIU Lang, PENG Zi-ye, GAO Yu-gang. Multi-fracture propagation and deflection laws of horizontal wells in tight sandstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1549-1555. DOI: 10.11779/CJGE202008021

致密砂岩水平井多裂缝扩展及转向规律研究  English Version

基金项目: 

国家自然科学基金基项目 51974042

山西省科技重大专项揭榜项目 20191101015

国家重点研发计划项目 2018YFC0808401

详细信息
    作者简介:

    夏彬伟(1978—),男,工学博士,副教授,博士生导师,从事水力压裂治理岩层顶板方面研究。E-mail:xbwei33@cqu.edu.cn

  • 中图分类号: TU452

Multi-fracture propagation and deflection laws of horizontal wells in tight sandstone

  • 摘要: 为研究致密砂岩水平井割缝压裂裂缝扩展及转向规律,采用四维水射流割缝装置和大尺寸真三轴相似物理模拟试验系统,开展了不同缝间距、应力差、压裂排量对水平井多裂缝扩展规律的试验和数值模拟研究,建立了单张开裂缝和多裂缝扩展的应力理论模型和一套室内割缝压裂物理试验方法。通过剖样观察和压力曲线特征的类比分析得到以下结论:①多裂缝起裂后后续压力曲线的典型波动峰值,是致密砂岩多裂缝相互干扰的一个明显特征;小间距使得邻近裂缝处于高诱导应力区域,增加了应力干扰和裂缝偏转程度;②大排量使得裂缝内部净水压增大,多裂缝偏转角度和程度增大,更容易形成纵向缝;且处在中间裂缝受到抑制,大角度偏离最大主应力方向延伸并趋于两侧裂缝最终停止扩展,而两侧裂缝延伸的距离更长;③高应力差条件下,诱导应力场难以改变原始主应力的大小,降低裂缝转向的角度,起裂后后续压力曲线波动较平稳,裂缝更易形成平行于最大主应力方向的横切缝。研究成果可用于多段割缝压裂施工参数的优化设计,从而为不同地质条件的砂岩储层油气开采和煤矿中水力压裂坚硬顶板治理强矿压提供参考。
    Abstract: In order to study the multi-fracture slotted propagation and deflection laws of horizontal wells in tight sandstone, the influences of crack spacing, main stress difference and discharge capacity on the propagation geometry of multi-fractures are studied by using physical experiments and numerical simulations with FLAC3D based on four-dimensional water jet slitting device and large-scale true triaxial hydraulic fracturing simulation system. A stress filed theoretical model of opening single and multi-fracture with water pressure and a set of indoor slotting-fracturing physical test method are established. The analysis of the characteristics of the sample splitting and the pressure curve reveals: (1) The typical fluctuation peak of the subsequent pressure curve after the initiation cracking is an obvious feature of the fracture mutual stress interference. The short spacing makes the adjacent fracture in the high induced stress zone, leading to strengthening the stress mutual interference and the degree of fracture deflection. (2) The angle and extent of the multi-fracture deflection increase greatly due to the high-volume pump increasing the internal water pressure of the fracture and short spacing, which forms the longitudinal hydraulic fracture. The middle fracture restrained nearly propagates in the direction perpendicular to the maximum principal stress and tends to stop propagating, while the extending distance between the middle fracture at both sides is longer. (3) The deflection angle declines because the induced stress is too difficult to change the original the stress field under the high stress difference. The subsequent propagation fluctuation is relatively stable, and the fracture is more likely to form a transverse hydraulic fracture parallel to the direction of the maximum principal stress. The research results can be used to optimize the design parameters of slotting multi-fracture and provide technical reference for oil and gas exploitation of sandstone reservoirs under different geological conditions and hydraulic fracturing of hard roof in coal mines to control the strong mine pressure.
  • 瑞利波传播过程中主要引起水平方向振动,这种振动与建筑物的自然频率相近时,会引起共振,导致更大的破坏。为进一步明确瑞利波传播特性和衰减规律,大量学者对其进行理论分析[1]、数值模拟[2]和试验研究[3]。瑞利波在介质中的传播受多种因素影响,主要包括介质的弹性参数、密度、重力以及分层结构等[4]

    桩基在瑞利波作用下的动力响应的研究成为抗震过程中的重要组成部分。Yang等[5]在考虑桩顶柔性约束的情况下,研究了非饱和土-桩体系在瑞利波作用下的动力响应。此外Cai等[6]采用刚性排桩作为隔离瑞利波的方法,考虑了软土地质所产生的影响。

    通过以上讨论发现:考虑竖向荷载影响的瑞利波作用下桩水平动力响应分析比较复杂。且对于软土地基中桩在瑞利波作用下的动力响应的研究也相对较少。因此,本文建立考虑竖向荷载对瑞利波作用下饱和软土地基中桩的水平动力响应影响的计算模型。研究结果为瑞利波作用下桩基动力分析和设计提供理论指导。

    在瑞利波的作用下饱和土-桩体系的数学模型如图 1所示,其中桩长为L,半径为ra,截面积为Ap,密度为ρp,杨氏模量为Ep,剪切模量为Gp。桩体模型简化为桩端为固定边界条件的Timoshenko梁,桩顶视为质量为M0的刚性块体。桩周饱和土视为线弹性材料,泊松比、阻尼比和剪切模量分别取为ν0ε0sGs。其中瑞利波的作用方式是以波的形式穿过土体传播到桩体上。

    图  1  瑞利波作用下桩在饱和土中的计算模型
    Figure  1.  Computational model for pile in saturated soils under Rayleigh waves

    根据Biot’s理论,运动方程可以表示为

    σij,j=ρs¨ui+ρf¨wi (1)
    pf,i=ρf¨ui+m1¨wi+r1˙wi (2)

    式中:ui为土体位移;wi为流体位移;λμ为拉梅常数;m1=ρf/n为孔隙中流体密度与孔隙率的比值;r1=ρfg/kdkd为土壤达西渗透系数,pf为孔隙中流体压力;αM分别为两相材料的Biot’s参数。

    基于Timoshenko理论,建立桩段控制微分方程[7]

    ApGpk0(2upz2θpz)+ρpAp2upt2+(kh+ich)(upurcosθ)=0 (3)
    ApGpk0(upzθp)ρpIp2upt2EpIp2θpz2+ApPupz=0 (4)

    式中:up(z,t)=ˉup(z)eiωtθp(z,t)=ˉθp(z)eiωt分别为桩的水平位移和转角;k0为Timoshenko梁理论中的修正剪切因子;P为由上部结构质量引起的竖向荷载。

    由式(2)得:

    wr=ω2ρfurϑ1ϑpfrwθ=ω2ρfuθϑ1ϑpfrθ (5)

    式中:η2a=2/(1ν)ϑ=iωρfg/kdm1ω2

    将式(5)代入式(1),(2)结合本构方程得

    η2br[1r((rur)r+uθθ)]1r2θ[(ruθ)rurθ]+2urz2+c1ρsω2Gsurc2pfr=0 (6)
    r[1r((ruθ)rurθ)]+η2b1r2θ[(rur)r+uθθ]+2uθz2+c1ρsω2Gsuθc2pfrθ=0 (7)

    式中:c1=1+ω2ρ2fρsϑ;c2=α2μ12ν1ν+ω2ρfμsϑ;η2b=2ν1ν

    忽略流体的垂直位移:

    (ω2ρfϑα12ν01ν0)(urr+urr+1ruθθ)=1ϑ2pf+(α2λν01ν0+1M)pf (8)

    水平位移和切向位移用两个势函数ΦΨ表示为

    ur=ϕr+1rψθuθ=1rϕθψr (9)

    将式(9)代入式(6)~(8),联立得

    η2b2ϕ+2ϕz2+c1ρsGsω2ϕ=c2pf (10)
    2ψ+2ψz2+c1ρsGsω2ψ=0 (11)
    2pf+(ϑα2λν01ν0+ϑM)pf=(ω2ρfαϑ12ν01ν0)2ϕ (12)

    采用分离变量法,设ϕ(r,θ,z)=ϕ1(r,θ)Z(z),假设φ(r,θ,z)=φ1(r,θ)Z(z)d2Zdz2+a2Z=0,将Z(z)表示为

    Z(z)=B0cos(az)+B1sin(az) (13)

    联立式(10)~(12)并将式(13)代入得

    2ψ1[a2c1ρsGsω2]ψ1=0 (14)
    (2ζ211)(2ζ212)ϕ1=0 (15)

    这里设:d11=c1η2bρsGsω2+ϑMa2η2b+c2αϑη2b12ν01ν0c2ω2ρfη2b+ϑα2λν01ν0d12=ϑη2b[c1ρsGsω2(α2λν01ν0+1M)a2α2λν01ν0a2M]ζ211=d11+d2114d122, ζ212=d11d2114d122vs=Gsρs,从而得到

    (2+k2a1)(2+k2a2)ϕ1=0 (16)
    (2+k2b1)ψ1=0 (17)

    通过算子分解理论和分离变量法得:

    ϕ1=As1exp(s1rsinθikRrcosθ)+As2exp(s2rsinθikRrcosθ) (18)
    ψ1=Bsexp(γrsinθikRrcosθ) (19)

    式中:As1As2Bs分别为与边界条件有关的待定常数;kRVR=ω/kR分别为瑞利波的复波速和相速度;si=k2Rk2ai(i=1, 2)和γ=k2Rk2b1,分别为压缩波和剪切波对应的衰减指数;k2a1=ζ211,k2a2=ζ212k2b1= a2+κ1ρsGsω2

    因此由式(13),结合边界条件即τrz|z=0=0ur|z=L=uθ|z=L=0可知

    B0=B1=0cos(aL)=0 am=(2m1)π2L,m=1,2,3 } (20)
    φ=[As1exp(s1rsinθikRrcosθ)+As2exp(s2rsinθikRrcosθ)]sin(amz) (21)
    ψ=Bsexp(γrsinθikRrcosθ)sin(amz) (22)

    将式(21)代入式(10)得

    pf=[a2mc2+c1c2(ωVs)2][As1exp(s1rsinθikRrcosθ)+As2exp(s2rsinθikRrcosθ)]sin(amz)+η2bc2(s21k2R)As1exp(s1rsinθikRrcosθ)sin(amz)+η2bc2(s22k2R)As2exp(s2rsinθikRrcosθ)sin(amz) (23)

    通过式(9)结合本构方程及式(21),(22)并代入边界条件τrz|z=0=0,uθ|z=L=0可知

    As2=d1As1,Bs=d2As1 (24)

    联立式(9)即可求得位移转角uruθ表达式。

    因此自由场饱和土在瑞利波作用下位移由体积平均原理得

    ˉur=(1n)ur+nwr (25)
    ˉuθ=(1n)uθ+nwθ (26)

    桩在瑞利波作用下的动力响应由桩周土体决定,采用动力Winkler模型来描述饱和土桩体系的水平动力响应,进而计算单位桩长上的水平阻力[8-9]。因此设单位桩长上的水平阻力为

    qh=(kh+ich)uˉp (27)

    式中:khch分别为Winkler模型中弹簧刚度和阻尼系数。

    将式(25),(27)代入式(3),(4)并省略因子eiωt

    d4ˉupdz4+Wd2ˉupdz2+Jˉup=H1As1sin(amz) (28)
    d4ˉθpdz4+Wd2ˉθpdz2+Jˉθp=H2As1cos(amz) (29)

    其中,W=ρPω2Ep+ρPω2k0Gp+ApPEpIp(kh+ich)k0ApGpJ= ρ2pω4k0GpEpρPApω2EpIp(ρPω2k0ApGpEp1EpIp)(kh+ich)

    方程(28)、(29)对应的解设为

    ˉup=M1cos(λ1z)+M2sin(λ1z)+M3ch(λ2z)+M4sh(λ2z)+b1As1sin(amz) (30)
    ˉθp=M1χ1sin(λ1z)+M2χ2cos(λ1z)+M3χ3sh(λ2z)+M4χ4ch(λ2z)+b2As1cos(amz) (31)

    式中:λ1=W+W24J2,λ2=W+W24J2 Mi(1,2,3,4)为与桩的边界条件有关的待定系数。其中χ1=χ2=k0ApGpλ1+ApPλ1k0ApGp+ρpIpω2+EpIpλ21 χ3= χ4=k0ApGpλ2+ApPλ2k0ApGp+ρpIpω2EpIpλ21,b1=H1a4mWa2m+Jb2=H2a4mWa2m+J

    沿桩身的弯矩和剪力可由弹性力学推导为

    ˉMp=EPIP[M1χ1λ1cos(λ1z)M2χ2λ1sin(λ1z)+M3χ3λ2ch(λ2z)+M4χ4λ2sh(λ2z)b2amAs1sin(amz)] (32)
    ˉQp=k0APGP[M1(λ1+χ1)sin(λ1z)+M2(λ1χ2)cos(λ1z)+M3(λ2χ3)sh(λ2z)+M4(λ2χ4)ch(λ2z)+(b1amb2)As1cos(amz)] (33)

    桩顶柔性状态下,桩端处于固定状态,桩的边界条件为:

    ¯Mp(z)=K1¯θc+K2[¯θp(0)¯θc]z=0 ¯Qp(z)ApP¯θp(z)+ω2M0¯up(z)=0,z=0 ¯up(z)=0¯θp(z)=0,z=L } (34)

    将边界条件代入桩体水平位移、旋转角度沿桩身的弯矩和剪力表达式,由此可以导出所有未确定的待定参数Mii=1, 2, 3, 4),As1

    通过数值算例验证,分析竖向荷载及桩顶柔性约束下各参数对于桩身位移、转角和弯矩的影响。各相关参数属性:ρs=2.7×103 kg/m3ρf=2.2×103 kg/m3Ea=2×109 Pa,ν0=0.4,n=0.4,α=0.9,kd=1×10-8 m/s,Ks=3.6×1010 Pa,Kf=2×109 Pa,Gs=2.5×106 Pa,d=1 m,ra=0.5 m,L=20 m,ρp=2.5×103 kg/m3Ep= 2.5×1010 Pa,k0=0.75,Ip=π/64,νp=0.2,Ap=0.25π,M0=1×105 kg,P=10×106 Pa。引入无量纲频率a0La/vs

    为验证模型的准确性,将Makris[10]解与模型进行比较。在相同条件下,对本文的计算模型进行验证。图 2将水平位移与Makris[10]解的结果进行比较。可以看出两种解法有较高的一致性。

    图  2  本文解与Makris解的比较
    Figure  2.  Comparison between authors' and Makris' solutions

    图 34给出了瑞利波作用下,竖向荷载对单桩的水平动力响应的影响,其研究了桩长、竖向荷载大小和无量纲频率对桩基水平振动的影响。从图 3可以看出,随着竖向荷载的增加,位移、转角和弯矩都在增大,且增加的趋势也越来越大。随着深度的增加,竖向荷载改变所引起的变化不再明显,最终趋于稳定。

    图  3  竖向荷载对单桩横向响应沿桩长变化的影响
    Figure  3.  Influences of vertical load on lateral response of a single pile along pile length
    图  4  竖向荷载对单桩水平响应随无因次频率变化的影响
    Figure  4.  Influences of vertical load on horizontal response of a single pile with dimensionless frequency

    图 4显示了垂直载荷对位移、转角和弯矩的影响。当频率等于固有频率时,发生共振。在共振区,当竖向荷载较小时,随竖向荷载的增大,桩顶位移和桩端弯矩整体呈增大趋势。随无量纲频率的增大,竖向荷载的改变引起水平位移和转角的变化将不再明显。

    考虑竖向荷载对瑞利波作用下饱和软土中单桩结构水平动力响应的影响,建立瑞利波作用下饱和软土中桩顶柔性约束下单桩水平动力响应的计算模型。通过数值计算结果,得出以下3点结论。

    (1)随深度的增加,位移和转角先减小后增大;弯矩整体呈减小趋势;最终接近桩端固结端时桩的水平动力响应趋于稳定。

    (2)随无量纲频率的增加,位移、转角和弯矩在共振区发生共振后最终趋于稳定。

    (3)随竖向荷载的增加,位移、转角和弯矩都在增大。但是这种改变所引起的变化随着深度的增加不再明显,最终趋于稳定。

  • 图  1   单裂缝产生诱导应力场示意图

    Figure  1.   Induced stress field generated by single fracture with water pressure

    图  2   多裂缝扩展及其相互影响应力模型

    Figure  2.   Multi-fracture propagation and its mutual influence stress model

    图  3   四维水射流割缝

    Figure  3.   Four-dimensional water jet slitting

    图  4   大尺寸真三轴压裂模拟试验系统

    Figure  4.   Large-scale true triaxial fracturing simulation test system

    图  5   室内真三轴压裂试验技术路线

    Figure  5.   Technical route of indoor true triaxial fracturing test

    图  6   试样样品

    Figure  6.   Sample of sandstone

    图  7   不同割缝间距水力压裂–时间曲线

    Figure  7.   Hydraulic fracturing-time curves under different spacings

    图  8   段间距对裂缝扩展形态影响

    Figure  8.   Influences of different spacings on fracture propagation morphology

    图  9   大排量和高应力差的水力压裂–时间曲线

    Figure  9.   Hydraulic fracturing-time curves under high displacement and large stress difference

    图  10   大排量和高应力差对裂缝扩展形态影响

    Figure  10.   Influences of large displacement and high stress difference on fracture propagation morphology

    图  11   数值模拟平面模型

    Figure  11.   Plane model of numerical simulation

    图  12   不同间距裂缝扩展形态和应力云图

    Figure  12.   Fracture propagation morphology and stress cloud under different spacings

    图  13   大排量和高应力差裂缝扩展形态和应力云图

    Figure  13.   Fracture propagation morphology and stress cloud under large displacement and high stress difference

    表  1   不同割缝间距下钻孔深度

    Table  1   Drilling depths under different slot spacings  (cm)

    裂缝间距153045
    钻孔深度172.5195217.5
    下载: 导出CSV

    表  2   水力压裂试验参数

    Table  2   Parameters of hydraulic fracturing tests

    组数σV/MPaσH/MPaσh/MPa缝间距/mm缝深/ mm压裂排量/(mL·min-1)
    S-110108151060
    S-210108301060
    S-310108451060
    S-4101081510120
    S-510104301060
    下载: 导出CSV
  • [1]

    PALMER I D. Induced stresses due to propped hydraulic fracture in coalbed methane wells[C]//Low Permeability Reservoirs Symposium, 1993, Denyer.

    [2]

    KRESSE O, WENG X, GU H, et al. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations[J]. Rock Mechanics and Rock Engineering, 2013, 46(3): 555-568. doi: 10.1007/s00603-012-0359-2

    [3]

    HE Q Y, FIDELIS T S, MA T H, et al. Effect of discontinuity stress shadows on hydraulic fracture re-orientation[J]. International Journal of Rock Mechanics & Mining Sciences, 2017, 91: 179-194.

    [4]

    ZHOU L, CHEN J C, GOU Y, et al. Numerical investigation of the time-dependent and the proppant dominated stress shadow effects in a transverse multiple fracture system and optimization[J]. Energies, 2017, 10(1): 83.

    [5] 刘欢, 尹俊禄, 王博涛. 水平井体积压裂簇间距优化方法[J]. 天然气勘探与开发, 2017, 40(2): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201702011.htm

    LIU Huang, YI Jun-lu, WANG bo-tao. Optimization of cluster spacing in horizontal well volume fracturing[J]. Natural Gas Exploration and Development, 2017, 40(2): 63-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201702011.htm

    [6] 那志强. 水平井压裂起裂机理及裂缝延伸模型研究[D]. 东营: 中国石油大学, 2009.

    NA Zhi-Qiang. Study on the Fracture Initiation and Propagation Model for Horizontal Well Fracturing[D]. Dongying: China University of Petroleum, 2009. (in Chinese)

    [7] 尹建, 郭建春, 曾凡辉. 水平井分段压裂射孔间距优化方法[J]. 石油钻探技术, 2012, 40(5): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201205020.htm

    YI Jian, GUO Jian-chun, ZENG Fan-hui. Perforation spacing optimization for staged fracturing of horizontal well[J]. Petroleum Drilling Techniques, 2012, 40(5): 67-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201205020.htm

    [8] 杨兆中, 易良平, 李小刚, 等. 致密储层水平井段内多簇压裂多裂缝扩展研究[J]. 岩石力学与工程学报, 2018, 37(增刊2): 3870-3878. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2008.htm

    YANG Zhao-zhong, YI Liang-ping, LI Xiao-gang, et al. Study on multiple-fracture extension within a stage in horizontal well of tight reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 3870-3878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2008.htm

    [9] 赵金洲, 陈曦宇, 刘长宇, 等. 水平井分段多簇压裂缝间干扰影响分析[J]. 天然气地球科学, 2015, 26(3): 533-538. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503016.htm

    ZHAO Jin-zhou, CHEN Xi-yu, LIU Chang-yu, et al. The analysis of crack interaction in multi-stage horizontal fracturing[J]. Natural Gas Geoscience, 2015, 26(3): 533-538. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503016.htm

    [10] 李勇明, 陈曦宇, 赵金洲, 等. 水平井分段多簇压裂缝间干扰研究[J]. 西南石油大学学报(自然科学版), 2016, 38(1): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201601010.htm

    LI Yong-ming, CHEN Xi-yu, ZHAO Jin-zhou, et al. The effects of crack interaction in multi-stage horizontal fracturing[J]. Journal of Southwest Petroleum University (Science &Technology Edition), 2016, 38(1): 76-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201601010.htm

    [11] 张帆, 马耕, 冯丹, 等. 大尺寸真三轴煤岩水力压裂模拟试验与裂缝扩展分析[J]. 岩土力学, 2019, 40(5): 1890-1897. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905031.htm

    ZHANG Fan, MA Geng, FENG Dan, et al. Analysis of hydraulic fracture propagation in coal rock by large-scale truetriaxial hydraulic fracturing simulation experiment[J]. Geotechnical Mechanic, 2019, 40(5): 1890-1897. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905031.htm

    [12] 侯振坤, 杨春和, 王磊, 等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学, 2016, 37(2): 407-414. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602014.htm

    HOU Zhen-kun, YANG Chun-he, WANG Lei, et al. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test[J]. Rock and Soil Mechanics, 2016, 37(2): 407-414. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602014.htm

    [13] 曾凡辉, 郭建春, 刘恒, 等. 致密砂岩气藏水平井分段压裂优化设计与应用[J]. 石油学报, 2013, 34(5): 959-968. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305019.htm

    ZENG Fan-hui, GUO Jian-chun, LIU Heng, et al. Optimization design and application of horizontal well staged fracturing in tight gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(5): 959-968. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305019.htm

    [14] 周彤, 张士诚, 陈铭, 等. 水平井多簇压裂裂缝的竞争扩展与控制[J]. 中国科学:技术科学, 2019, 49(4): 469-478. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201904010.htm

    ZHOU Tong, ZHANG Si-cheng, CHEN Ming, et al. Competitive propagation of multi-fractures and their control on multi-clustered fracturing of horizontal wells[J]. Science China Technology Sicence, 2019, 49(4): 469-478. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201904010.htm

    [15] 刘乃震, 张兆鹏, 邹雨时, 等. 致密砂岩水平井多段压裂裂缝扩展规律[J]. 石油勘探与开发, 2018, 45(6): 1059-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806015.htm

    LIU Nai-zheng, ZHANG Zhao-peng, ZHOU Yu-shi, et al. Experimental study of the propagation law of hydraulic fractures during multi-staged horizontal well fracturing in a tight reservoir[J]. Petroleum Exploration and Development, 2018, 45(6): 1059-1068. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806015.htm

    [16]

    CHEN Y G, LU Y Y, GE Z L, et al. Experimental study on crack propagation control and mechanism analysis of directional hydraulic fracturing[J]. Fuel, 2018(218): 316-324.

    [17]

    ZHOU L, SU X, LU Y, et al. A new three-dimensional numerical model based on the equivalent continuum method to simulate hydraulic fracture propagation in an underground coal mine[J]. Rock Mechanics & Rock Engineering, 2018, 52: 2871-2887.

图(13)  /  表(2)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  33
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-07-31

目录

/

返回文章
返回