• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIA Bin-wei, LIU Lang, PENG Zi-ye, GAO Yu-gang. Multi-fracture propagation and deflection laws of horizontal wells in tight sandstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1549-1555. DOI: 10.11779/CJGE202008021
Citation: XIA Bin-wei, LIU Lang, PENG Zi-ye, GAO Yu-gang. Multi-fracture propagation and deflection laws of horizontal wells in tight sandstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1549-1555. DOI: 10.11779/CJGE202008021

Multi-fracture propagation and deflection laws of horizontal wells in tight sandstone

More Information
  • Received Date: October 30, 2019
  • Available Online: December 05, 2022
  • In order to study the multi-fracture slotted propagation and deflection laws of horizontal wells in tight sandstone, the influences of crack spacing, main stress difference and discharge capacity on the propagation geometry of multi-fractures are studied by using physical experiments and numerical simulations with FLAC3D based on four-dimensional water jet slitting device and large-scale true triaxial hydraulic fracturing simulation system. A stress filed theoretical model of opening single and multi-fracture with water pressure and a set of indoor slotting-fracturing physical test method are established. The analysis of the characteristics of the sample splitting and the pressure curve reveals: (1) The typical fluctuation peak of the subsequent pressure curve after the initiation cracking is an obvious feature of the fracture mutual stress interference. The short spacing makes the adjacent fracture in the high induced stress zone, leading to strengthening the stress mutual interference and the degree of fracture deflection. (2) The angle and extent of the multi-fracture deflection increase greatly due to the high-volume pump increasing the internal water pressure of the fracture and short spacing, which forms the longitudinal hydraulic fracture. The middle fracture restrained nearly propagates in the direction perpendicular to the maximum principal stress and tends to stop propagating, while the extending distance between the middle fracture at both sides is longer. (3) The deflection angle declines because the induced stress is too difficult to change the original the stress field under the high stress difference. The subsequent propagation fluctuation is relatively stable, and the fracture is more likely to form a transverse hydraulic fracture parallel to the direction of the maximum principal stress. The research results can be used to optimize the design parameters of slotting multi-fracture and provide technical reference for oil and gas exploitation of sandstone reservoirs under different geological conditions and hydraulic fracturing of hard roof in coal mines to control the strong mine pressure.
  • [1]
    PALMER I D. Induced stresses due to propped hydraulic fracture in coalbed methane wells[C]//Low Permeability Reservoirs Symposium, 1993, Denyer.
    [2]
    KRESSE O, WENG X, GU H, et al. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations[J]. Rock Mechanics and Rock Engineering, 2013, 46(3): 555-568. doi: 10.1007/s00603-012-0359-2
    [3]
    HE Q Y, FIDELIS T S, MA T H, et al. Effect of discontinuity stress shadows on hydraulic fracture re-orientation[J]. International Journal of Rock Mechanics & Mining Sciences, 2017, 91: 179-194.
    [4]
    ZHOU L, CHEN J C, GOU Y, et al. Numerical investigation of the time-dependent and the proppant dominated stress shadow effects in a transverse multiple fracture system and optimization[J]. Energies, 2017, 10(1): 83.
    [5]
    刘欢, 尹俊禄, 王博涛. 水平井体积压裂簇间距优化方法[J]. 天然气勘探与开发, 2017, 40(2): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201702011.htm

    LIU Huang, YI Jun-lu, WANG bo-tao. Optimization of cluster spacing in horizontal well volume fracturing[J]. Natural Gas Exploration and Development, 2017, 40(2): 63-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201702011.htm
    [6]
    那志强. 水平井压裂起裂机理及裂缝延伸模型研究[D]. 东营: 中国石油大学, 2009.

    NA Zhi-Qiang. Study on the Fracture Initiation and Propagation Model for Horizontal Well Fracturing[D]. Dongying: China University of Petroleum, 2009. (in Chinese)
    [7]
    尹建, 郭建春, 曾凡辉. 水平井分段压裂射孔间距优化方法[J]. 石油钻探技术, 2012, 40(5): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201205020.htm

    YI Jian, GUO Jian-chun, ZENG Fan-hui. Perforation spacing optimization for staged fracturing of horizontal well[J]. Petroleum Drilling Techniques, 2012, 40(5): 67-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201205020.htm
    [8]
    杨兆中, 易良平, 李小刚, 等. 致密储层水平井段内多簇压裂多裂缝扩展研究[J]. 岩石力学与工程学报, 2018, 37(增刊2): 3870-3878. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2008.htm

    YANG Zhao-zhong, YI Liang-ping, LI Xiao-gang, et al. Study on multiple-fracture extension within a stage in horizontal well of tight reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 3870-3878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2008.htm
    [9]
    赵金洲, 陈曦宇, 刘长宇, 等. 水平井分段多簇压裂缝间干扰影响分析[J]. 天然气地球科学, 2015, 26(3): 533-538. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503016.htm

    ZHAO Jin-zhou, CHEN Xi-yu, LIU Chang-yu, et al. The analysis of crack interaction in multi-stage horizontal fracturing[J]. Natural Gas Geoscience, 2015, 26(3): 533-538. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503016.htm
    [10]
    李勇明, 陈曦宇, 赵金洲, 等. 水平井分段多簇压裂缝间干扰研究[J]. 西南石油大学学报(自然科学版), 2016, 38(1): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201601010.htm

    LI Yong-ming, CHEN Xi-yu, ZHAO Jin-zhou, et al. The effects of crack interaction in multi-stage horizontal fracturing[J]. Journal of Southwest Petroleum University (Science &Technology Edition), 2016, 38(1): 76-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201601010.htm
    [11]
    张帆, 马耕, 冯丹, 等. 大尺寸真三轴煤岩水力压裂模拟试验与裂缝扩展分析[J]. 岩土力学, 2019, 40(5): 1890-1897. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905031.htm

    ZHANG Fan, MA Geng, FENG Dan, et al. Analysis of hydraulic fracture propagation in coal rock by large-scale truetriaxial hydraulic fracturing simulation experiment[J]. Geotechnical Mechanic, 2019, 40(5): 1890-1897. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905031.htm
    [12]
    侯振坤, 杨春和, 王磊, 等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学, 2016, 37(2): 407-414. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602014.htm

    HOU Zhen-kun, YANG Chun-he, WANG Lei, et al. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test[J]. Rock and Soil Mechanics, 2016, 37(2): 407-414. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602014.htm
    [13]
    曾凡辉, 郭建春, 刘恒, 等. 致密砂岩气藏水平井分段压裂优化设计与应用[J]. 石油学报, 2013, 34(5): 959-968. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305019.htm

    ZENG Fan-hui, GUO Jian-chun, LIU Heng, et al. Optimization design and application of horizontal well staged fracturing in tight gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(5): 959-968. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305019.htm
    [14]
    周彤, 张士诚, 陈铭, 等. 水平井多簇压裂裂缝的竞争扩展与控制[J]. 中国科学:技术科学, 2019, 49(4): 469-478. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201904010.htm

    ZHOU Tong, ZHANG Si-cheng, CHEN Ming, et al. Competitive propagation of multi-fractures and their control on multi-clustered fracturing of horizontal wells[J]. Science China Technology Sicence, 2019, 49(4): 469-478. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201904010.htm
    [15]
    刘乃震, 张兆鹏, 邹雨时, 等. 致密砂岩水平井多段压裂裂缝扩展规律[J]. 石油勘探与开发, 2018, 45(6): 1059-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806015.htm

    LIU Nai-zheng, ZHANG Zhao-peng, ZHOU Yu-shi, et al. Experimental study of the propagation law of hydraulic fractures during multi-staged horizontal well fracturing in a tight reservoir[J]. Petroleum Exploration and Development, 2018, 45(6): 1059-1068. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806015.htm
    [16]
    CHEN Y G, LU Y Y, GE Z L, et al. Experimental study on crack propagation control and mechanism analysis of directional hydraulic fracturing[J]. Fuel, 2018(218): 316-324.
    [17]
    ZHOU L, SU X, LU Y, et al. A new three-dimensional numerical model based on the equivalent continuum method to simulate hydraulic fracture propagation in an underground coal mine[J]. Rock Mechanics & Rock Engineering, 2018, 52: 2871-2887.
  • Related Articles

    [1]ZHANG Sheng, YAN Han, TENG Ji-dong, ZHANG Xun, SHENG Dai-chao. New model for hydraulic conductivity of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2146-2152. DOI: 10.11779/CJGE202011021
    [2]LIU Kan, LI Zhong-cheng, YANG Min. Experimental study on consolidation and hydraulic behaviors of Victorian brown coal[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 113-116. DOI: 10.11779/CJGE2019S2029
    [3]MA Ya-wei, CHEN Wen-wu, BI Jun, GUO Gui-hong, JIAO Gui-de. Influence of dry density on coefficient of permeability of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 165-170. DOI: 10.11779/CJGE2018S1027
    [4]SONG Lin-hui, HUANG Qiang, YAN Di, MEI Guo-xiong. Experimental study on effect of hydraulic gradient on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1635-1641. DOI: 10.11779/CJGE201809009
    [5]WU Gang, LEI Guo-hui, JIANG Hong. Experimental study on permeability of woven geotextile covered with soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 161-165. DOI: 10.11779/CJGE2017S1032
    [6]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [7]WU Meng-xi, CHENG Peng-da, FAN Fu-ping, LI Xiao-bin. Test apparatus and method for field measurement of surface permeability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 184-189. DOI: 10.11779/CJGE2016S2030
    [8]WU Jun, LIAO Shao-ming, HUO Xiao-bo. Change of hydraulic conductivity of filter cake caused by train vibration load of a running subway[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1093-1104. DOI: 10.11779/CJGE201506016
    [9]CAI Guo-qing, SHENG Dai-chao, ZHOU An-nan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827-835. DOI: 10.11779/CJGE201405004
    [10]LIN Zheng, CHEN Renpeng, CHEN Yunmin, XU Feng. A method for in-situ testing of coefficients of consolidation and permeability of soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 505-510.
  • Cited by

    Periodical cited type(1)

    1. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 .

    Other cited types(9)

Catalog

    Article views (274) PDF downloads (131) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return