Model tests on penetration and extration of modified suction caissons in clay
-
摘要: 开展模型试验研究海洋黏性土中裙式吸力基础沉贯和注水上拔特性,并研究了土体强度、基础尺寸和安装方式等影响因素。研究表明:主桶长径比为1.0和2.0的裙式吸力基础最终沉贯深度较相同高度传统吸力基础仅降低2%和6%,证实了裙式吸力基础在黏性土中具有良好沉贯性。主桶和裙结构在吸力沉贯时对土体造成扰动,导致吸力沉贯阻力小于压力贯入时的阻力。基于极限平衡方法,提出了裙式吸力基础在黏性土中的沉贯阻力与所需吸力的计算公式,并验证其准确性。得到传统和裙式吸力基础在注水拔出过程中基础内部水压力、上拔阻力与基础上拔位移之间的关系,发现基础内部水压力随上拔位移先迅速增加至最大值,然后逐渐降低,裙式吸力基础最终上拔位移小于相同基础高度的传统吸力基础。得到了裙式吸力基础注水拔出阻力计算公式。Abstract: A series of model tests are conducted to investigate the installation and extraction behavior of the modified suction casson(MSC) embedded in marine clay by taking the MSC dimensions, shear strength of clay and installation method into account. It is found that the discrepancies between the final penetration depths of the MSC with the aspect ratio of 1.0 and 2.0 and the corresponding regular suction caissons (RSCs) are 2% and 6%, indicating that the MSC can penetrates into the clay to a desired depth. During suction-assisted installation, the internal compartment and the external skirt are found to disturb the soils around the caisson, leading to the decrease of the penetration resistance compared with the penetration resistance during jacking installation. Based on the limit equilibrium method, the expressions for estimating the required suction to penetrate the MSC into clay and the penetration resistance were proposed. In addition, the variations of the water pressure in the suction caisson and uplift resistance during suction caisson extraction are also obtained. The results show that the water pressure in suction caisson firstly increases sharply to the maximum value with the extraction displacement, and then decreases to a certain value. It is also found that the MSCs and RSCs can not be fully extracted by injecting water into the caisson. The expression obtaining the extraction resistance of the MSC is proposed to guide the foundation design.
-
-
表 1 试验土体参数
Table 1 Parameters of clay
含水率/% 渗透系数/(m·s-1) 饱和重度/(kN·m-3) 塑性指数 液性指数 39 5.46×10-9 19.1 18.4 0.6 表 2 试验模型尺寸
Table 2 Dimensions of test caisson models
试验工况 安装方式 土体强度Su 重量G/N di/mm l/mm Di/mm 主桶长泾比(l/Di) L/mm t/mm RSC1 吸力沉贯 S u=12+0.8z 17.3 120 120 — 1.0 — 2 MSC1 28.8 120 120 180 60 RSC2 吸力沉贯 S u=3.3+0.1z 23.1 120 240 — 2.0 — 2 MSC2 34.8 120 240 180 90 RSC3 压力贯入 S u=3.3+0.1z 23.1 120 240 — 2.0 — 2 MSC3 34.8 120 240 180 90 说明:z为土体中计算点的深度。 表 3 各工况吸力沉贯试验结果
Table 3 Test results of installation for various test cases
试验工况 沉贯时间/s 沉贯量/mm 最大吸力/kPa 沉贯阻力/kN RSC1 138 95.8 (0.8l) 33.1 0.38 MSC1 236 96.9 (0.81l) 40.0 0.45 RSC2 113 201.4 (0.84l) 23.0 0.28 MSC2 124 190.0 (0.8l) 25.5 0.33 表 4 注水上拔试验数据
Table 4 Test results for suction caissons during extraction
试验工况 上拔时间/s 上拔位移/mm 桶内最大水压力 最大上拔阻力 值/kPa 时间/s 值/kPa 时间/s RSC1 63 21.8(18%) 19.5 23 0.22 23 MSC1 60 20.7(17%) 22.7 5 0.25 6 RSC2 67 65.4(27%) 8.4 5 0.10 6 MSC2 127 43.8(18%) 8.1 31 0.11 31 -
[1] 李大勇, 张雨坤, 高玉峰, 等. 中粗砂中吸力锚的负压沉贯模型试验研究[J]. 岩土工程学报, 2012, 34(12): 2277-2283. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212022.htm LI Da-yong, ZHANG Yu-kun, et al. Model tests on penetration of suction anchors in medium-coarse sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2277-2283. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212022.htm
[2] ANDERSEN K, JOSTAD H. Shear strength along inside of suction anchor skirt wall in clay[J]. Die Psychiatrie, 2004, 6(4): 209-212.
[3] RANDOLPH M F, HOUSE A R. Analysis of suction caisson capacity in clay[C]//Offshore Technology Conference, 2002, Houston, Texas.
[4] HOULSBY G T, BYRNE B W, et al. Design procedures for installation of suction caissons in clay and other materials[J]. Geotechnical Engineering, 2005, 158: 135-144. doi: 10.3321/j.issn:1000-4548.2005.02.001
[5] CHEN W, RANDOLPH M F. External radial stress changes and axial capacity for suction caissons in soft clay[J]. Géotechnique, 2015, 57(6): 499-511.
[6] ZHOU M, HOSSAIN M S, HU Y, et al. Installation of stiffened caissons in nonhomogeneous clays[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 142(2): 04015079.
[7] HOULSBY G T, BYRNE B W. Design procedures for installation of suction caissons in sand[J]. Geotechnical Engineering, 2005, 158(158): 135-144.
[8] CHEN F, LIAN J J, WANG H J. Large-scale experimental investigation of the installation of suction caissons in silt sand[J]. Applied Ocean Research, 2016, 60: 109-120. doi: 10.1016/j.apor.2016.09.004
[9] ZHU B, KONG D Q, CHEN R P, et al. Installation and lateral loading tests of suction caissons in silt[J]. Canadian Geotechnical Journal, 2011, 48(7): 1070-1084. doi: 10.1139/t11-021
[10] ZHANG Y K, LI D Y, CHEN F Q. Experimental studies on sand plug formation in suction caisson during extraction[J]. Marine Georesources & Geotechnology, 2018: 1-10.
[11] ZHANG Y K, LI D Y, GAO Y F. Model tests on installation and extraction of suction caissons in dense sand[J]. Marine Georesources & Geotechnology, 2016, 35(7): 921-929.
[12] 李大勇, 都浩, 孙宗军. 海底裙式吸力锚:中国,ZL200920239914.8[P]. 2010. [13] LI D Y, FENG L Y, ZHANG Y K. Model tests of modified suction caissons in marine sand under monotonic lateral combined loading[J]. Applied Ocean Research, 2014, 48: 137-147. doi: 10.1016/j.apor.2014.08.005
[14] LI D Y, ZHANG Y K, FENG L Y, et al. Capacity of modified suction caissons in marine sand under static horizontal loading[J]. Ocean Engineering, 2015, 102: 1-16. doi: 10.1016/j.oceaneng.2015.04.033
[15] LI D Y, ZHANG Y K, FENG L Y. Response of skirted suction caissons to monotonic lateral loading in saturated medium sand[J]. China Ocean Engineering, 2014, 28(4): 569-578. doi: 10.1007/s13344-014-0046-z
[16] LI D Y, MA S L, ZHANG Y K. Undrained pullout capacity of modified suction caisson in clay by finite element limit analysis[J]. Marine Georesources & Geotechnology, 2017(1): 1-10.
[17] ZHANG Y K, GAO Y F, LI D Y, et al. H-M bearing capacity of a modified suction caisson determined by using load-/displacement-controlled methods[J]. China Ocean Engineering, 2016, 30(6): 926-941. doi: 10.1007/s13344-016-0060-4
[18] ZHANG Y K, LI D Y, GAO Y F. Earth pressures on modified suction caisson in saturated sand under monotonic lateral loading[J]. Journal of Renewable & Sustainable Energy, 2016, 8(5): 325-337.
[19] ANDERSEN K, JOSTAD H. Foundation design of skirted foundations and anchors in clay[C]//Offshore Technology Conferences, 1999, Houston: 383-392.
-
期刊类型引用(11)
1. 李大勇,吴沁儒,张雨坤. 吸力基础沉贯及拔出可视化模型实验系统研发及应用. 实验技术与管理. 2025(01): 59-65 . 百度学术
2. 李大勇,黄凌昰,张雨坤,吴学震. 海上风电吸力基础在分层土中的沉贯特性研究综述. 海洋工程. 2023(01): 110-127 . 百度学术
3. 范夏玲. 海上风电吸力桩基础破坏包络面理论研究. 能源与环境. 2023(06): 60-62+110 . 百度学术
4. LI Da-yong,HOU Xin-yu,ZHANG Yu-kun,MA Shi-li,LI Shan-shan. Studies on Suction-Assisted Installation Behavior of Suction Caissons in Clay Under Various Undrained Shear Strengths. China Ocean Engineering. 2023(06): 989-999 . 必应学术
5. 张雨坤,秦廷辉,李大勇,王冲冲. 分层土中裙式吸力基础吸力沉贯特性模型试验研究. 岩土力学. 2022(05): 1317-1325 . 百度学术
6. 丁红岩,许云龙,张浦阳,乐丛欢. 复合筒型基础临界负压试验分析. 天津大学学报(自然科学与工程技术版). 2022(06): 603-610 . 百度学术
7. 马士力,谢立全. 循环荷载下粉土中吸力基础承载特性试验研究. 同济大学学报(自然科学版). 2022(10): 1443-1450+1530 . 百度学术
8. 李佳禧,张雨坤,李大勇. 砂土中裙式吸力基础注水拔出渗流规律数值模拟. 人民长江. 2022(11): 163-169 . 百度学术
9. HUANG Ling-xia,ZHANG Yu-kun,LI Da-yong. Experimental Studies on Extraction of Modified Suction Caisson(MSC) in Sand by Reverse Pumping Water. China Ocean Engineering. 2021(02): 272-280 . 必应学术
10. 秦源康,刘康,陈国明,张爱霞,朱敬宇,夏开朗. 海洋水合物地层导管吸力锚贯入安装负压窗口分析. 石油钻采工艺. 2021(06): 737-743 . 百度学术
11. 李逸凡,李大勇,张雨坤,高玉峰. 吸力基础沉贯过程中桶-土界面力学机理研究进展. 防灾减灾工程学报. 2020(05): 828-840 . 百度学术
其他类型引用(8)