• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Da-yong, WANG Dong-lin, ZHANG Yu-kun, GAO Yu-feng. Model tests on penetration and extration of modified suction caissons in clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 568-575. DOI: 10.11779/CJGE202003019
Citation: LI Da-yong, WANG Dong-lin, ZHANG Yu-kun, GAO Yu-feng. Model tests on penetration and extration of modified suction caissons in clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 568-575. DOI: 10.11779/CJGE202003019

Model tests on penetration and extration of modified suction caissons in clay

More Information
  • Received Date: January 28, 2019
  • Available Online: December 07, 2022
  • A series of model tests are conducted to investigate the installation and extraction behavior of the modified suction casson(MSC) embedded in marine clay by taking the MSC dimensions, shear strength of clay and installation method into account. It is found that the discrepancies between the final penetration depths of the MSC with the aspect ratio of 1.0 and 2.0 and the corresponding regular suction caissons (RSCs) are 2% and 6%, indicating that the MSC can penetrates into the clay to a desired depth. During suction-assisted installation, the internal compartment and the external skirt are found to disturb the soils around the caisson, leading to the decrease of the penetration resistance compared with the penetration resistance during jacking installation. Based on the limit equilibrium method, the expressions for estimating the required suction to penetrate the MSC into clay and the penetration resistance were proposed. In addition, the variations of the water pressure in the suction caisson and uplift resistance during suction caisson extraction are also obtained. The results show that the water pressure in suction caisson firstly increases sharply to the maximum value with the extraction displacement, and then decreases to a certain value. It is also found that the MSCs and RSCs can not be fully extracted by injecting water into the caisson. The expression obtaining the extraction resistance of the MSC is proposed to guide the foundation design.
  • [1]
    李大勇, 张雨坤, 高玉峰, 等. 中粗砂中吸力锚的负压沉贯模型试验研究[J]. 岩土工程学报, 2012, 34(12): 2277-2283. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212022.htm

    LI Da-yong, ZHANG Yu-kun, et al. Model tests on penetration of suction anchors in medium-coarse sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2277-2283. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212022.htm
    [2]
    ANDERSEN K, JOSTAD H. Shear strength along inside of suction anchor skirt wall in clay[J]. Die Psychiatrie, 2004, 6(4): 209-212.
    [3]
    RANDOLPH M F, HOUSE A R. Analysis of suction caisson capacity in clay[C]//Offshore Technology Conference, 2002, Houston, Texas.
    [4]
    HOULSBY G T, BYRNE B W, et al. Design procedures for installation of suction caissons in clay and other materials[J]. Geotechnical Engineering, 2005, 158: 135-144. doi: 10.3321/j.issn:1000-4548.2005.02.001
    [5]
    CHEN W, RANDOLPH M F. External radial stress changes and axial capacity for suction caissons in soft clay[J]. Géotechnique, 2015, 57(6): 499-511.
    [6]
    ZHOU M, HOSSAIN M S, HU Y, et al. Installation of stiffened caissons in nonhomogeneous clays[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 142(2): 04015079.
    [7]
    HOULSBY G T, BYRNE B W. Design procedures for installation of suction caissons in sand[J]. Geotechnical Engineering, 2005, 158(158): 135-144.
    [8]
    CHEN F, LIAN J J, WANG H J. Large-scale experimental investigation of the installation of suction caissons in silt sand[J]. Applied Ocean Research, 2016, 60: 109-120. doi: 10.1016/j.apor.2016.09.004
    [9]
    ZHU B, KONG D Q, CHEN R P, et al. Installation and lateral loading tests of suction caissons in silt[J]. Canadian Geotechnical Journal, 2011, 48(7): 1070-1084. doi: 10.1139/t11-021
    [10]
    ZHANG Y K, LI D Y, CHEN F Q. Experimental studies on sand plug formation in suction caisson during extraction[J]. Marine Georesources & Geotechnology, 2018: 1-10.
    [11]
    ZHANG Y K, LI D Y, GAO Y F. Model tests on installation and extraction of suction caissons in dense sand[J]. Marine Georesources & Geotechnology, 2016, 35(7): 921-929.
    [12]
    李大勇, 都浩, 孙宗军. 海底裙式吸力锚:中国,ZL200920239914.8[P]. 2010.
    [13]
    LI D Y, FENG L Y, ZHANG Y K. Model tests of modified suction caissons in marine sand under monotonic lateral combined loading[J]. Applied Ocean Research, 2014, 48: 137-147. doi: 10.1016/j.apor.2014.08.005
    [14]
    LI D Y, ZHANG Y K, FENG L Y, et al. Capacity of modified suction caissons in marine sand under static horizontal loading[J]. Ocean Engineering, 2015, 102: 1-16. doi: 10.1016/j.oceaneng.2015.04.033
    [15]
    LI D Y, ZHANG Y K, FENG L Y. Response of skirted suction caissons to monotonic lateral loading in saturated medium sand[J]. China Ocean Engineering, 2014, 28(4): 569-578. doi: 10.1007/s13344-014-0046-z
    [16]
    LI D Y, MA S L, ZHANG Y K. Undrained pullout capacity of modified suction caisson in clay by finite element limit analysis[J]. Marine Georesources & Geotechnology, 2017(1): 1-10.
    [17]
    ZHANG Y K, GAO Y F, LI D Y, et al. H-M bearing capacity of a modified suction caisson determined by using load-/displacement-controlled methods[J]. China Ocean Engineering, 2016, 30(6): 926-941. doi: 10.1007/s13344-016-0060-4
    [18]
    ZHANG Y K, LI D Y, GAO Y F. Earth pressures on modified suction caisson in saturated sand under monotonic lateral loading[J]. Journal of Renewable & Sustainable Energy, 2016, 8(5): 325-337.
    [19]
    ANDERSEN K, JOSTAD H. Foundation design of skirted foundations and anchors in clay[C]//Offshore Technology Conferences, 1999, Houston: 383-392.
  • Cited by

    Periodical cited type(8)

    1. 王怀强,李孝波,王天虎,席书衡,宣雨童. 基于岩土竖向台阵开展场地地震反应研究的若干进展. 地震工程与工程振动. 2025(02): 50-63 .
    2. 范宏飞,王彦臻,陈炜昀,陈国兴,赵凯. 水平成层海床场地非线性地震反应的流-固弱耦合分析. 振动工程学报. 2025(04): 849-859 .
    3. 郭云峰. 岩土勘察中地震效应问题的研究. 科技与创新. 2023(13): 117-119+122 .
    4. 王永光,梁建文,巴振宁. 基于修正阻尼的土体非线性模型及其在Abaqus中的实现. 岩土力学. 2023(08): 2287-2296 .
    5. 陈国兴,夏高旭,王彦臻,金丹丹. 琼州海峡海床地震反应特性的一维非线性分析. 工程力学. 2022(05): 75-85 .
    6. 赵凯,夏高旭,王彦臻,赵丁凤,庄海洋,陈国兴. 土–地下结构相互作用的三维弱耦合有效应力分析法. 岩土工程学报. 2022(05): 861-869 . 本站查看
    7. 阮滨,吉瀚文,王苏阳,贺鸿俊,苗雨. 基于台阵观测的基岩地震动入射波分离方法及数值验证. 岩土力学. 2022(09): 2615-2623+2642 .
    8. 陈伟庚,刘洋,王栋,岳茂,张良. 西南山区铁路沿线反倾岩质边坡地震动力响应振动台试验研究. 铁道建筑. 2021(04): 93-96 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return