• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于性能的重力式挡墙地震易损性分析

朱宏伟, 姚令侃, 赖军

朱宏伟, 姚令侃, 赖军. 基于性能的重力式挡墙地震易损性分析[J]. 岩土工程学报, 2020, 42(1): 150-157. DOI: 10.11779/CJGE202001017
引用本文: 朱宏伟, 姚令侃, 赖军. 基于性能的重力式挡墙地震易损性分析[J]. 岩土工程学报, 2020, 42(1): 150-157. DOI: 10.11779/CJGE202001017
ZHU Hong-wei, YAO Ling-kan, LAI Jun. Seismic vulnerability assessment of gravity retaining walls based on performance[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 150-157. DOI: 10.11779/CJGE202001017
Citation: ZHU Hong-wei, YAO Ling-kan, LAI Jun. Seismic vulnerability assessment of gravity retaining walls based on performance[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 150-157. DOI: 10.11779/CJGE202001017

基于性能的重力式挡墙地震易损性分析  English Version

基金项目: 

国家重点研发计划项目 2016YFC0802206

国家自然科学基金项目 41571004

详细信息
    作者简介:

    朱宏伟(1982— ),男,甘肃陇西人,博士研究生,讲师,主要从事路基加筋土工程抗震等方面的研究与教学工作。E-mail:zhw-1-zhw@163.com

  • 中图分类号: TU476.4

Seismic vulnerability assessment of gravity retaining walls based on performance

  • 摘要: 位于高烈度地震区的支挡结构时刻面临着特大震灾的严峻考验,迄今国内外还没有人针对重力式挡墙系统地做过易损性方面的研究工作。采用增量动力分析方法,考虑地震动输入的不确定性,选取PGA为地震强度参数,挡墙的位移指数DI为性能参数,基于振动台模型试验划分了挡墙的抗震性能水准,利用FLAC3D对8 m高的重力式挡墙进行了地震动力响应分析和地震易损性分析,通过易损性曲线对挡墙在不同地震动作用下的易损性进行了评估和对比分析。研究表明:PGA与挡墙的位移指数近似呈指数关系,当地震动加速度小于0.4g时,场地条件对墙体位移指数的影响不显著,当地震动加速度大于0.4g时,土质场地挡墙位移指数与岩石场地挡墙相比显著增大,墙体位移指数受场地条件的影响显著。当PGA<0.4g时,挡墙基本保持完好或以轻微损伤破坏为主;当PGA>0.6g时,挡墙已完全损伤,发生严重损坏的概率也较大;当PGA>0.8g时,会造成挡墙的严重损坏,甚至可能造成整体倒塌,需要采取一定的抗震加固措施。
    Abstract: The retaining structures in the high earthquake intensity areas face the severe tests of devastating earthquake, and so far, the seismic vulnerability of gravity retaining walls has not been studied systematically at home and abroad. The increment dynamic analysis method is used in this study. Taking into account the uncertainty of seismic input, the PGA and displacement index are selected as the seismic intensity parameter and performance parameter, respectively, and the classification of the performance level of retaining walls is determined based on shaking table tests. The seismic response and seismic vulnerability of a 8 m-high gravity retaining wall are analyzed by applying FLAC3D, and the fragility curves are derived to assess and compare the seismic performances of the retaining wall under different ground motions. It is shown that the displacement index exponentially relates to the PGA. When the PGA is less than 0.4g, the displacement index increases slowly. When it exceeds 0.4g, the displacement index increases quickly, and it is greatly affected by site conditions. When the PGA is less than 0.4g, the retaining wall keeps slight damage or good situation; when it is more than 0.6g, the retaining wall is damaged completely, and the probability of severe damage increases. When the PGA is more than 0.8g, the retaining wall suffers serious damage, and even collapse is caused, and reinforcing measures should be taken to maintain the stability of the retaining wall.
  • 图  1   挡墙在地震作用下发生倾斜

    Figure  1.   Inclination deformation of retaining wall under earthquake

    图  2   振动台模型试验设计

    Figure  2.   Model design of shaking table tests

    图  3   振动台试验模型

    Figure  3.   Shaking table test model

    图  4   汶川波波形

    Figure  4.   Wenchuan earthquake waves

    图  5   挡墙墙顶的位移变化

    Figure  5.   Displacement curve of retaining wall top

    图  6   位移指数随地震系数变化

    Figure  6.   Change of displacement indexes under different intensity earthquakes

    图  7   挡墙震后变形图(韩鹏飞[14])

    Figure  7.   Deformation pattern of retaining wall under earthquake

    图  8   位移指数与墙高的关系

    Figure  8.   Relationship between deformed exponent and wall height

    图  9   数值计算模型

    Figure  9.   Numerical model

    图  10   地震作用下挡墙的位移云图

    Figure  10.   Displacement nephogram of retaining wall under earthquake

    图  11   试验值和计算值的比较

    Figure  11.   Comparison of test and calculated values

    图  12   不同强度的地震作用下的位移指数变化

    Figure  12.   Change of displacement indexes under different intensity earthquakes

    图  13   回归拟合直线

    Figure  13.   Regression fitting curve

    图  14   挡墙的地震易损性曲线

    Figure  14.   Seismic fragility curves of retaining wall

    表  1   模型试验主要相似常数

    Table  1   Primary similitude coefficients of model

    物理量相似关系相似常数
    12 m8 m4 m
    长度LCl8.0005.3332.667
    密度ρCρ111
    加速度aCa111
    速度vCv=Cρ1/4Cl3/44.753.512.09
    位移uCu=Cρ1/2Cl3/222.6312.324.36
    黏聚力cCc=CρCl8.005.332.67
    内摩擦角φCφ=1111
    时间tCt=Cρ1/4Cl3/44.753.512.09
    频率ωCω=Cρ-1/4Cl-3/40.2100.2850.479
    下载: 导出CSV

    表  2   挡墙抗震性能水准的划分

    Table  2   Quantitative indexes of seismic performance of retaining wall

    性能水准损伤描述评判标准功能状态描述位移指数DI
    I完好无明显震害可正常使用0≤DI<1%
    II基本完好出现裂缝或轻微变形按常规方法养护后使用1%≤DI<2%
    III损伤有明显变形,但主体结构保持完好可维持使用,在后期运营中逐步修复2%≤DI<4%
    IV严重损坏出现过大变形或局部破坏,但未倒塌必须采取紧急加固措施4%≤DI<6%
    V毁坏倒塌重建DI>6%
    下载: 导出CSV

    表  3   各材料的物理力学参数

    Table  3   Physical and mechanical parameters of materials

    材料干密度/(kg·m-3)体积模量/MPa剪切模量/MPa泊松比内摩擦角/(°)
    填土21505023.10.3135
    挡墙230010500105000.17
    基岩240017900123000.17
    下载: 导出CSV

    表  4   地震动记录

    Table  4   Far-field seismic information

    序号地震记录地震名称记录台站PGA/g
    1NGA#15Kern CountyTaft Lincoln School0.159
    2NGA#175Imperial Valley-06Delta0.237
    3NGA#176Imperial Valley-06EL Centro Array #12 Hills-Mulhol0.145
    4NGA#266Imperial Valley-06EL Centro Array #12Country-WLC0.229
    5NGA#326NorthridgeCamarillo0.198
    6NGA#522Hector MineHector0.231
    7NGA#582Hector MineMecca-CVWD Yard0.236
    8NGA#729Chi-Chi, TaiwanCHY0410.149
    9NGA#737Chi-Chi, TaiwanCHY0310.158
    10NGA#778Chi-Chi, TaiwanCHY0280.143
    11NGA#884Chi-Chi, TaiwanCHY0800.968
    12NGA#985Manjil-IranRudsar0.167
    13NGA#978Imperial ValleyEI Centro Array #110.367
    14NGA#1000Chalfont Valley54171 LADWP0.143
    15NGA#1116Loma PrietaCapotola0.227
    16NGA#1637Loma PrietaAgnews State Hospital0.225
    17NGA#1762Bishop Rnd Val1661 Mc Gee0.128
    18NGA#1810Kobe, JapanShin-Osaka0.267
    19NGA#1823Victoria-MexicoChihuahua0.387
    20NGA#3265N. Palm SpringsIndio0.365
    下载: 导出CSV
  • [1] 朱宏伟, 姚令侃, 张绪海. 两种加筋土挡墙的动力特性比较及抗震设计建议[J]. 岩土工程学报, 2012, 34(11): 2072-2080. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201211017.htm

    ZHU Hong-wei, YAO Ling-kan, ZHANG Xu-hai. Comparison of dynamic characteristics between netted and packaged reinforced soil retaining walls and recommendations for seismic design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2072-2080. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201211017.htm

    [2]

    SHINOZUKA M, FENG M Q, LEE J, et al. Statistical analysis of fragility curves[J]. Journal of Engineering Mechanics, 2000, 126(2): 1224-1231.

    [3]

    NIILSON B G, DESROCHES R. Analytical seismic fragility curves for typical bridges in the central and southeastern United States[J]. Earthquake Spectra, 2007, 23(3): 615-633. doi: 10.1193/1.2756815

    [4] 于晓辉, 吕大刚, 王光远. 土木工程结构地震易损性分析的研究进展[C]//第二届结构工程新进展国际论坛论文集.大连, 2008: 763-774.

    YU Xiao-hui, LU Da-gang, WANG Guang-yuan. Seismic fragility analysis of civil engineering structures:state-of-the-art[C]//Proceedings of 2nd International Forum on Advances in Structure Engineering. Dalian, 2008. (in Chinese)

    [5]

    HWANG H, LIU J, CHIU Y. Seismic fragility analysis of highway bridges[R]. Champaign: The University of Memphis of Center for Earthquake Research and Information, 2001: 1-117.

    [6] 孔宪京. 混凝土面板堆石坝抗震性能[M]. 北京: 科学出版社, 2015.

    KONG Xian-jing. Seismic Performance of Concrete-faced Rockfill Dam[M]. Beijing: Science Press, 2015. (in Chinese)

    [7] 尹超. 平原区路堤地震灾害风险评价研究[D]. 西安: 长安大学, 2015.

    YIN Chao. Study on Seismic Risk Assessment of Embankment in Plain Areas[D]. Xi'an: Changan University. 2015. (in Chinese)

    [8] 生命线工程地震破坏等级划分:GB/T24336—2009[S]. 2009.

    Seismic Damage Hierarchies of Lifeline Engineering: GB/T24336—2009[S]. 2009. (in Chinese)

    [9]

    Design of Structures for Earthquake Resistance, Part 5: Foundations, Retaining Structures and Geotechnical Aspects: EUROCODE 8. 2003.[S]. 2003.

    [10]

    Transit New Zealand. Bridge Manual Plus Amendment No.1[S]. Wellington: Transit New Zealand, 1995.

    [11] 公路工程抗震规范:JTG B02—2013[S]. 2006.

    Specification of Seismic Design for Highway Engineering: JTG B02—2013[S]. 2013. (in Chinese)

    [12] 蒋良潍, 姚令侃, 王建. 基于振动性态和破坏相似的边坡振动台模型实验相似律[J]. 交通科学与工程, 2009, 25(2): 1-7.

    JIANG Liang-wei, YAO Ling-kan, WANG Jian. Similitude for shaking table model test on side slope relating to dynamic characteristics and strength[J]. Journal of Transport Science and Engineering, 2009, 25(2): 1-7. (in Chinese)

    [13] 张建经, 冯君, 肖世国. 支挡结构抗震设计中的2个关键技术问题[J]. 西南交通大学学报, 2009, 44(6): 321-325.

    ZHANG Jian-jing, FENG Jun, XIAO Shi-guo. Discussions on two key technical problems for seismic design of retaining wall[J]. Journal of Southwest Jiaotong University, 2009, 44(6): 321-325. (in Chinese)

    [14] 韩鹏飞. 重力式挡墙大型振动台模型试验与基于性能的抗震设计方法研究[D]. 成都: 西南交通大学, 2011.

    HAN Peng-fei. Performance-based Seismic Design of Gravity Retaining Wall Based on Large Shaling Table Test[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese)

    [15] 朱宏伟, 姚令侃, 蒋良潍. 考虑变形影响的重力式挡墙地震土压力分布[J]. 岩土工程学报, 2013, 35(6): 1035-1044.

    ZHU Hong-wei, YAO Ling-kan, JIANG Liang-wei. Distribution of seismic earth pressure on gravity retaining walls considering influence of deformation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1035-1044. (in Chinese)

    [16] 孔位学, 芮勇勤, 董宝弟. 岩土材料在非关联流动法则下剪胀角选取探讨[J]. 岩土力学, 2009, 30(11): 3278-3282. doi: 10.3969/j.issn.1000-7598.2009.11.010

    KONG Wei-xue, RUI Yong-qin, DONG Bao-di. Determination of dilatancy angle for geomaterials under non-associated flow rule[J]. Rock and Soil Mechnics, 2009, 30(11): 3278-3282. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.010

    [17]

    ATC-63 Methodology for Evaluating Seismic Collapse Safety of Archetype Buildings[R]. Redwood City, CA: ATC, 1996.

    [18]

    VAMVATSIKOS D. Seismic Performance, Capacity and Reliability of Structures As Seen Through Incremental Dynamic Analysis[D]. Stanford: Stanford University, 2002.

    [19] 廖燚. 汶川地震公路路基震害调查分析及易损性研究[D]. 成都: 西南交通大学, 2012.

    LIAO Yi. Analysis of Seismic Hazard Investigation and Study on Vulnerability of Highway Subgrades in Wenchuan Earthquake[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)

    [20]

    WU D, TESFAMARIAM S, STIEMER S F, et al. Seismic fragility assessment of RC frame structure designed according to modern Chinese code for seismic design of buildings[J]. Earthquake Engineering and Engineering Vibration, 2012, 11(3): 331-342.

  • 期刊类型引用(41)

    1. 侯瑞彬,潘逸尘,董云瑶,付宇廷,刘蒙蒙. 2023年甘肃积石山M_S6.2地震密集观测记录的区域性差异分析. 世界地震工程. 2025(02): 12-20 . 百度学术
    2. 常晁瑜,乔峰,薄景山,绽蓓蕾,谷佳沛,李昊宇,田华俊. 甘肃积石山6.2级地震诱发中川乡流滑成因初探. 防灾减灾工程学报. 2025(02): 349-356 . 百度学术
    3. 王兰民,许世阳,王平,王睿,车爱兰,周燕国,吴志坚,王谦,蒲小武,柴少峰,马星宇. 2023年积石山6.2级地震诱发大规模黄土液化流滑的特征与启示. 岩土工程学报. 2024(02): 235-243 . 本站查看
    4. 刘港,贾俊,张戈,洪勃,董英,裴赢,薛强,高波. 甘肃积石山地震液化型泥流特征、成因及其对黄河上游盆地地震次生灾害风险评估的启示. 西北地质. 2024(02): 220-229 . 百度学术
    5. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 . 百度学术
    6. 潘建磊,梁庆国,刘海生,时伟,王丽丽. 黄土液化作用及其次生灾害风险评估方法初探——以积石山M_S6.2地震为例. 地震工程学报. 2024(04): 836-845 . 百度学术
    7. 袁近远,崔家伟,李兆焱,袁晓铭,张钰洋. 中国模式下砾性土液化指数评价新方法. 土木工程学报. 2024(09): 98-108 . 百度学术
    8. 葛一荀,张洁,黄宏伟. 基于贝叶斯分层模型的液化侧移稳健的易损性分析方法. 同济大学学报(自然科学版). 2024(11): 1658-1669 . 百度学术
    9. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 . 百度学术
    10. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 . 百度学术
    11. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 . 百度学术
    12. 代言,邓龙胜,毛伟,范文,李培. 马兰黄土液化特性及孔压模型参数研究. 地震工程学报. 2023(02): 338-345+361 . 百度学术
    13. 隆然,刘兴东. 基于致灾机理分析的公路滑坡稳定性评价及治理方案研究. 铁道勘察. 2023(02): 33-37 . 百度学术
    14. 贾科敏,许成顺,杜修力,张小玲,宋佳,苏卓林. 可液化倾斜场地的侧向扩展机制分析. 岩土力学. 2023(06): 1837-1848 . 百度学术
    15. 罗增文,苏卓林,贾科敏,许成顺. 地震作用下碎石桩场地侧向位移规律研究. 震灾防御技术. 2023(02): 361-368 . 百度学术
    16. 王兰民,柴少峰,薄景山,王平,许世阳,李孝波,蒲小武. 黄土地震滑坡的触发类型、特征与成灾机制. 岩土工程学报. 2023(08): 1543-1554 . 本站查看
    17. 李孝波,欧阳刚垒,宋霖君,吴义文,徐建元. 黄土高原地区场地设计反应谱特征周期研究. 地震工程学报. 2023(05): 1161-1170 . 百度学术
    18. 柴少峰,王兰民,王平,郭海涛,夏晓雨,车高凤,王会娟. 石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究. 岩土工程学报. 2023(12): 2565-2574 . 本站查看
    19. 马为功,王兰民,许世阳,李登科,柴少峰. 饱和黄土隧道围岩地震液化特征的振动台试验研究. 岩土工程学报. 2023(S2): 171-176 . 本站查看
    20. 李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价. 工程科学学报. 2022(03): 440-450 . 百度学术
    21. 程超,钟秀梅,刘钊钊,刘富强,江志杰,王谦,陶冬旺. 饱和黄土动态液化和静态液化机理的差异性研究. 地震工程学报. 2022(01): 136-144 . 百度学术
    22. 袁近远,李天宁,王兰民,汪云龙,陈龙伟,李兆焱,袁晓铭,王永志,陈卓识,李瑞山. 砂土液化概率计算新方法. 岩土工程学报. 2022(03): 541-549 . 本站查看
    23. 王谦,钟秀梅,高中南,马金莲,万秀红,杨义煊,刘岸果. 门源M6.9地震诱发地质灾害特征研究. 地震工程学报. 2022(02): 352-359 . 百度学术
    24. 葛一荀,张洁,祝刘文,程小久,廖先斌,汪华安,孔明,郑文棠,王占华. 砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究. 工程地质学报. 2022(02): 507-519 . 百度学术
    25. 包含,马扬帆,兰恒星,彭建兵,张科科,许江波,晏长根,孙强. 基于微结构量化的含渐变带黄土各向异性特征研究. 中国公路学报. 2022(10): 88-99 . 百度学术
    26. 苏卓林,贾科敏,许成顺,豆鹏飞,张小玲. 双向地震作用下液化水平和倾斜场地-桩基-桥梁结构地震反应的差异研究. 地震科学进展. 2022(11): 505-512 . 百度学术
    27. 宋洋,刘思源,王晨炟. 含水率和干湿循环对原状黄土变形特性的影响. 辽宁工程技术大学学报(自然科学版). 2021(02): 148-155 . 百度学术
    28. 王玉峰,林棋文,李坤,史安文,李天话,程谦恭. 高速远程滑坡动力学研究进展. 地球科学与环境学报. 2021(01): 164-181 . 百度学术
    29. 颜灵勇,李孝波,欧阳刚垒. 黄土地震滑坡形成机理研究的若干进展. 防灾科技学院学报. 2021(02): 46-53 . 百度学术
    30. 马星宇,王兰民,王谦,王平,钟秀梅,蒲小武,刘富强. 饱和黄土液化流动性试验研究. 岩土工程学报. 2021(S1): 161-165 . 本站查看
    31. 袁晓铭,费扬,陈龙伟,袁近远,陈同之,张思宇,王义德. 含剧烈地震动作用不同埋深砂土液化判别统一公式. 岩石力学与工程学报. 2021(10): 2101-2112 . 百度学术
    32. 李旭东,王平,王丽丽,王会娟,常文斌,钱紫玲. 强震作用下坡顶建筑荷载对边坡稳定性影响研究. 地震工程学报. 2021(05): 1220-1227 . 百度学术
    33. 张子东,张晓超,任鹏,崔雪婷. 非饱和黄土动力液化研究——以党家岔滑坡为例. 地震工程学报. 2021(05): 1228-1237 . 百度学术
    34. 许成顺,贾科敏,杜修力,王志华,宋佳,张小玲. 液化侧向扩展场地-桩基础抗震研究综述. 防灾减灾工程学报. 2021(04): 768-791 . 百度学术
    35. 马晓文,梁庆国,赵涛,周稳弟. 土动力学研究综述及思考. 世界地震工程. 2021(04): 217-230 . 百度学术
    36. 许成顺,王冰,杜修力,岳冲,杨钰荣. 循环加载频率对砂土液化模式的影响试验研究. 土木工程学报. 2021(11): 109-118 . 百度学术
    37. 郭海涛,许世阳,蒲小武,张晓军,马星宇. 海原地震石碑塬液化滑移地表特征形成机制探讨. 地震工程学报. 2020(05): 1159-1164 . 百度学术
    38. 杨博,田文通,孙军杰,刘琨,徐舜华. 海原大地震诱发石碑塬黄土滑坡机制探讨. 地震工程学报. 2020(05): 1165-1172 . 百度学术
    39. 马星宇,王兰民,钟秀梅,蒲小武,刘富强,王谦. 地震诱发石碑塬黄土地层液化滑移距离研究. 地震工程学报. 2020(06): 1674-1682 . 百度学术
    40. 车福东,王涛,辛鹏,张泽林,梁昌玉,刘甲美. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例. 地质通报. 2020(12): 1981-1992 . 百度学术
    41. MA Xingyu,WANG Lanmin,WANG Qian,WANG Ping,ZHONG Xiumei,PU Xiaowu,LIU Fuqiang,XU Xiaowei. Flow Characteristics of Large-Scale Liquefaction-Slip of the Loess Strata in Shibei Tableland, Guyuan City, Induced by the 1920 Haiyuan M8(1/2) Earthquake. Earthquake Research in China. 2020(04): 469-481 . 必应学术

    其他类型引用(32)

图(14)  /  表(4)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  28
  • PDF下载量:  175
  • 被引次数: 73
出版历程
  • 收稿日期:  2018-10-07
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2019-12-31

目录

    /

    返回文章
    返回